mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-30 20:51:41 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			233 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			233 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  */
 | |
| #include "esp_crypto_lock.h"
 | |
| #include "bignum_impl.h"
 | |
| #include "mbedtls/bignum.h"
 | |
| #include "esp_private/esp_crypto_lock_internal.h"
 | |
| 
 | |
| #include "hal/mpi_hal.h"
 | |
| #include "hal/mpi_ll.h"
 | |
| 
 | |
| void esp_mpi_enable_hardware_hw_op( void )
 | |
| {
 | |
|     esp_crypto_mpi_lock_acquire();
 | |
| 
 | |
|     /* Enable RSA hardware */
 | |
|     MPI_RCC_ATOMIC() {
 | |
|         mpi_ll_enable_bus_clock(true);
 | |
|         mpi_ll_reset_register();
 | |
|     }
 | |
| 
 | |
|     mpi_hal_enable_hardware_hw_op();
 | |
| }
 | |
| 
 | |
| 
 | |
| void esp_mpi_disable_hardware_hw_op( void )
 | |
| {
 | |
|     mpi_hal_disable_hardware_hw_op();
 | |
| 
 | |
|     /* Disable RSA hardware */
 | |
|     MPI_RCC_ATOMIC() {
 | |
|         mpi_ll_enable_bus_clock(false);
 | |
|     }
 | |
| 
 | |
|     esp_crypto_mpi_lock_release();
 | |
| }
 | |
| 
 | |
| size_t esp_mpi_hardware_words(size_t words)
 | |
| {
 | |
|     return mpi_hal_calc_hardware_words(words);
 | |
| }
 | |
| 
 | |
| 
 | |
| void esp_mpi_interrupt_enable(bool enable)
 | |
| {
 | |
|     mpi_hal_interrupt_enable(enable);
 | |
| }
 | |
| 
 | |
| 
 | |
| void esp_mpi_interrupt_clear(void)
 | |
| {
 | |
|     mpi_hal_clear_interrupt();
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Z = (X * Y) mod M */
 | |
| void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
 | |
| {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     /* "mode" register loaded with number of 512-bit blocks, minus 1 */
 | |
|     mpi_hal_set_mode((num_words / 16) - 1);
 | |
| #else
 | |
|     mpi_hal_set_mode(num_words - 1);
 | |
| #endif
 | |
| 
 | |
|     /* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
 | |
|     mpi_hal_write_to_mem_block(MPI_PARAM_M, 0, M->MBEDTLS_PRIVATE(p), M->MBEDTLS_PRIVATE(n), num_words);
 | |
|     mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, X->MBEDTLS_PRIVATE(p), X->MBEDTLS_PRIVATE(n), num_words);
 | |
| 
 | |
| #if !CONFIG_IDF_TARGET_ESP32
 | |
|     mpi_hal_write_to_mem_block(MPI_PARAM_Y, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words);
 | |
| #endif
 | |
| 
 | |
|     mpi_hal_write_to_mem_block(MPI_PARAM_Z, 0, Rinv->MBEDTLS_PRIVATE(p), Rinv->MBEDTLS_PRIVATE(n), num_words);
 | |
|     mpi_hal_write_m_prime(Mprime);
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     mpi_hal_start_op(MPI_MULT);
 | |
|     mpi_hal_wait_op_complete();
 | |
|     /* execute second stage */
 | |
|     /* Load Y to X input memory block, rerun */
 | |
|     mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words);
 | |
|     mpi_hal_start_op(MPI_MULT);
 | |
| #else
 | |
|     mpi_hal_start_op(MPI_MODMULT);
 | |
| #endif
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Z = X * Y */
 | |
| void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
 | |
| {
 | |
|     /* Copy X (right-extended) & Y (left-extended) to memory block */
 | |
|     mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, X->MBEDTLS_PRIVATE(p), X->MBEDTLS_PRIVATE(n), num_words);
 | |
|     mpi_hal_write_to_mem_block(MPI_PARAM_Z, num_words * 4, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words);
 | |
|     /* NB: as Y is left-exte, we don't zero the bottom words_mult words of Y block.
 | |
|        This is OK for now bec zeroing is done by hardware when we do esp_mpi_acquire_hardware().
 | |
|     */
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     mpi_hal_write_m_prime(0);
 | |
|     /* "mode" register loaded with number of 512-bit blocks in result,
 | |
|        plus 7 (for range 9-12). (this is ((N~ / 32) - 1) + 8))
 | |
|     */
 | |
|     mpi_hal_set_mode(((num_words * 2) / 16) + 7);
 | |
| #else
 | |
|     mpi_hal_set_mode(num_words * 2 - 1);
 | |
| #endif
 | |
| 
 | |
|     mpi_hal_start_op(MPI_MULT);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Special-case of mbedtls_mpi_mult_mpi(), where we use hardware montgomery mod
 | |
|    multiplication to calculate an mbedtls_mpi_mult_mpi result where either
 | |
|    A or B are >2048 bits so can't use the standard multiplication method.
 | |
| 
 | |
|    Result (number of words, based on A bits + B bits) must still be less than 4096 bits.
 | |
| 
 | |
|    This case is simpler than the general case modulo multiply of
 | |
|    esp_mpi_mul_mpi_mod() because we can control the other arguments:
 | |
| 
 | |
|    * Modulus is chosen with M=(2^num_bits - 1) (ie M=R-1), so output
 | |
|    * Mprime and Rinv are therefore predictable as follows:
 | |
|    isn't actually modulo anything.
 | |
|    Mprime 1
 | |
|    Rinv 1
 | |
| 
 | |
|    (See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
 | |
| */
 | |
| 
 | |
| void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
 | |
| {
 | |
|      /* M = 2^num_words - 1, so block is entirely FF */
 | |
|     for (int i = 0; i < num_words; i++) {
 | |
|         mpi_hal_write_at_offset(MPI_PARAM_M, i * 4, UINT32_MAX);
 | |
|     }
 | |
| 
 | |
|     /* Mprime = 1 */
 | |
|     mpi_hal_write_m_prime(1);
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     /* "mode" register loaded with number of 512-bit blocks, minus 1 */
 | |
|     mpi_hal_set_mode((num_words / 16) - 1);
 | |
| #else
 | |
|     mpi_hal_set_mode(num_words - 1);
 | |
| #endif
 | |
| 
 | |
|     /* Load X & Y */
 | |
|     mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, X->MBEDTLS_PRIVATE(p), X->MBEDTLS_PRIVATE(n), num_words);
 | |
| #if !CONFIG_IDF_TARGET_ESP32
 | |
|     mpi_hal_write_to_mem_block(MPI_PARAM_Y, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words);
 | |
| #endif
 | |
|     /* Rinv = 1, write first word */
 | |
|     mpi_hal_write_rinv(1);
 | |
| 
 | |
|     /* Zero out rest of the Rinv words */
 | |
|     for (int i = 1; i < num_words; i++) {
 | |
|         mpi_hal_write_at_offset(MPI_PARAM_Z, i * 4, 0);
 | |
|     }
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     mpi_hal_start_op(MPI_MULT);
 | |
|     mpi_hal_wait_op_complete();
 | |
|     mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words);
 | |
|     mpi_hal_start_op(MPI_MULT);
 | |
| #else
 | |
|     mpi_hal_start_op(MPI_MODMULT);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef ESP_MPI_USE_MONT_EXP
 | |
| int esp_mont_hw_op(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, mbedtls_mpi_uint Mprime, size_t hw_words, bool again)
 | |
| {
 | |
|     // Note Z may be the same pointer as X or Y
 | |
|     int ret = 0;
 | |
| 
 | |
|     // montgomery mult prepare
 | |
|     if (again == false) {
 | |
|         mpi_hal_write_to_mem_block(MPI_PARAM_M, 0, M->MBEDTLS_PRIVATE(p), M->MBEDTLS_PRIVATE(n), hw_words);
 | |
|         mpi_hal_write_m_prime(Mprime);
 | |
|         mpi_hal_set_mode((hw_words / 16) - 1);
 | |
|     }
 | |
| 
 | |
|     mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, X->MBEDTLS_PRIVATE(p), X->MBEDTLS_PRIVATE(n), hw_words);
 | |
|     mpi_hal_write_to_mem_block(MPI_PARAM_Z, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), hw_words);
 | |
| 
 | |
|     mpi_hal_start_op(MPI_MULT);
 | |
| 
 | |
|     Z->MBEDTLS_PRIVATE(s) = 1; // The sign of Z will be = M->s (but M->s is always 1)
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, hw_words) );
 | |
| 
 | |
|     /* Read back the result */
 | |
|     mpi_hal_read_result_hw_op(Z->MBEDTLS_PRIVATE(p), Z->MBEDTLS_PRIVATE(n), hw_words);
 | |
| 
 | |
|     /* from HAC 14.36 - 3. If Z >= M then Z = Z - M */
 | |
|     if (mbedtls_mpi_cmp_mpi(Z, M) >= 0) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Z, Z, M));
 | |
|     }
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #else
 | |
| /* Z = (X ^ Y) mod M
 | |
| */
 | |
| void esp_mpi_exp_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
 | |
| {
 | |
|     size_t y_bits = mbedtls_mpi_bitlen(Y);
 | |
|     mpi_hal_set_mode(num_words - 1);
 | |
| 
 | |
|     /* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
 | |
|     mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, X->MBEDTLS_PRIVATE(p), X->MBEDTLS_PRIVATE(n), num_words);
 | |
|     mpi_hal_write_to_mem_block(MPI_PARAM_Y, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words);
 | |
|     mpi_hal_write_to_mem_block(MPI_PARAM_M, 0, M->MBEDTLS_PRIVATE(p), M->MBEDTLS_PRIVATE(n), num_words);
 | |
|     mpi_hal_write_to_mem_block(MPI_PARAM_Z, 0, Rinv->MBEDTLS_PRIVATE(p), Rinv->MBEDTLS_PRIVATE(n), num_words);
 | |
| 
 | |
|     mpi_hal_write_m_prime(Mprime);
 | |
| 
 | |
|     /* Enable acceleration options */
 | |
|     mpi_hal_enable_constant_time(false);
 | |
|     mpi_hal_enable_search(true);
 | |
|     mpi_hal_set_search_position(y_bits - 1);
 | |
| 
 | |
|     /* Execute first stage montgomery multiplication */
 | |
|     mpi_hal_start_op(MPI_MODEXP);
 | |
| 
 | |
|     mpi_hal_enable_search(false);
 | |
| }
 | |
| #endif //ESP_MPI_USE_MONT_EXP
 | 
