mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-30 20:51:41 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			395 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			395 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  ESP32 hardware accelerated SHA1/256/512 implementation
 | |
|  *  based on mbedTLS FIPS-197 compliant version.
 | |
|  *
 | |
|  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
 | |
|  *  Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd
 | |
|  *  SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 | |
|  *  not use this file except in compliance with the License.
 | |
|  *  You may obtain a copy of the License at
 | |
|  *
 | |
|  *  http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  *  Unless required by applicable law or agreed to in writing, software
 | |
|  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | |
|  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  *  See the License for the specific language governing permissions and
 | |
|  *  limitations under the License.
 | |
|  *
 | |
|  */
 | |
| /*
 | |
|  *  The SHA-1 standard was published by NIST in 1993.
 | |
|  *
 | |
|  *  http://www.itl.nist.gov/fipspubs/fip180-1.htm
 | |
|  */
 | |
| 
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <sys/lock.h>
 | |
| 
 | |
| #include "esp_log.h"
 | |
| #include "esp_crypto_lock.h"
 | |
| #include "esp32s2/rom/cache.h"
 | |
| #include "esp32s2/rom/lldesc.h"
 | |
| #include "soc/crypto_dma_reg.h"
 | |
| #include "soc/dport_reg.h"
 | |
| #include "soc/hwcrypto_reg.h"
 | |
| #include "soc/cache_memory.h"
 | |
| #include "soc/periph_defs.h"
 | |
| 
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "freertos/semphr.h"
 | |
| 
 | |
| #include "driver/periph_ctrl.h"
 | |
| #include "sys/param.h"
 | |
| 
 | |
| #include "esp32s2/sha.h"
 | |
| 
 | |
| /* Max amount of bytes in a single DMA operation is 4095,
 | |
|    for SHA this means that the biggest safe amount of bytes is
 | |
|    31 blocks of 128 bytes = 3968
 | |
| */
 | |
| #define SHA_DMA_MAX_BYTES 3968
 | |
| 
 | |
| /* The longest length of a single block is for SHA512 = 128 byte */
 | |
| #define SHA_MAX_BLK_LEN 128
 | |
| 
 | |
| const static char *TAG = "esp-sha";
 | |
| 
 | |
| /* Return block size (in bytes) for a given SHA type */
 | |
| inline static size_t block_length(esp_sha_type type)
 | |
| {
 | |
|     switch (type) {
 | |
|     case SHA1:
 | |
|     case SHA2_224:
 | |
|     case SHA2_256:
 | |
|         return 64;
 | |
|     case SHA2_384:
 | |
|     case SHA2_512:
 | |
|     case SHA2_512224:
 | |
|     case SHA2_512256:
 | |
|     case SHA2_512T:
 | |
|         return 128;
 | |
|     default:
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return state size (in bytes) for a given SHA type */
 | |
| inline static size_t state_length(esp_sha_type type)
 | |
| {
 | |
|     switch (type) {
 | |
|     case SHA1:
 | |
|         return 160 / 8;
 | |
|     case SHA2_224:
 | |
|     case SHA2_256:
 | |
|         return 256 / 8;
 | |
|     case SHA2_384:
 | |
|     case SHA2_512:
 | |
|     case SHA2_512224:
 | |
|     case SHA2_512256:
 | |
|     case SHA2_512T:
 | |
|         return 512 / 8;
 | |
|     default:
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Enable SHA peripheral and then lock it */
 | |
| void esp_sha_acquire_hardware()
 | |
| {
 | |
|     esp_crypto_dma_lock_acquire();
 | |
| 
 | |
|     /* Enable SHA and DMA hardware */
 | |
|     periph_module_enable(PERIPH_SHA_DMA_MODULE);
 | |
| 
 | |
|     /* DMA for SHA */
 | |
|     REG_WRITE(CRYPTO_DMA_AES_SHA_SELECT_REG, 1);
 | |
| }
 | |
| 
 | |
| /* Disable SHA peripheral block and then release it */
 | |
| void esp_sha_release_hardware()
 | |
| {
 | |
|     /* Disable SHA and DMA hardware */
 | |
|     periph_module_disable(PERIPH_SHA_DMA_MODULE);
 | |
| 
 | |
|     esp_crypto_dma_lock_release();
 | |
| }
 | |
| 
 | |
| /* Busy wait until SHA is idle */
 | |
| static void esp_sha_wait_idle(void)
 | |
| {
 | |
|     while (DPORT_REG_READ(SHA_BUSY_REG) != 0) {
 | |
|     }
 | |
| }
 | |
| 
 | |
| void esp_sha_write_digest_state(esp_sha_type sha_type, void *digest_state)
 | |
| {
 | |
|     uint32_t *digest_state_words = (uint32_t *)digest_state;
 | |
|     uint32_t *reg_addr_buf = (uint32_t *)(SHA_H_BASE);
 | |
| 
 | |
|     for (int i = 0; i < state_length(sha_type) / 4; i++) {
 | |
|         REG_WRITE(®_addr_buf[i], digest_state_words[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Read the SHA digest from hardware */
 | |
| void esp_sha_read_digest_state(esp_sha_type sha_type, void *digest_state)
 | |
| {
 | |
|     uint32_t *digest_state_words = (uint32_t *)digest_state;
 | |
|     int word_len = state_length(sha_type) / 4;
 | |
| 
 | |
|     esp_dport_access_read_buffer(digest_state_words, SHA_H_BASE, word_len);
 | |
| 
 | |
|     /* Fault injection check: verify SHA engine actually ran,
 | |
|        state is not all zeroes.
 | |
|     */
 | |
|     for (int i = 0; i < word_len; i++) {
 | |
|         if (digest_state_words[i] != 0) {
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     abort(); // SHA peripheral returned all zero state, probably due to fault injection
 | |
| }
 | |
| 
 | |
| /* The initial hash value for SHA512/t is generated according to the
 | |
|    algorithm described in the TRM, chapter SHA-Accelerator
 | |
| */
 | |
| int esp_sha_512_t_init_hash(uint16_t t)
 | |
| {
 | |
|     uint32_t t_string = 0;
 | |
|     uint8_t t0, t1, t2, t_len;
 | |
| 
 | |
|     if (t == 384) {
 | |
|         ESP_LOGE(TAG, "Invalid t for SHA512/t, t = %u,cannot be 384", t);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (t <= 9) {
 | |
|         t_string = (uint32_t)((1 << 23) | ((0x30 + t) << 24));
 | |
|         t_len = 0x48;
 | |
|     } else if (t <= 99) {
 | |
|         t0 = t % 10;
 | |
|         t1 = (t / 10) % 10;
 | |
|         t_string = (uint32_t)((1 << 15) | ((0x30 + t0) << 16) |
 | |
|                               (((0x30 + t1) << 24)));
 | |
|         t_len = 0x50;
 | |
|     } else if (t <= 512) {
 | |
|         t0 = t % 10;
 | |
|         t1 = (t / 10) % 10;
 | |
|         t2 = t / 100;
 | |
|         t_string = (uint32_t)((1 << 7) | ((0x30 + t0) << 8) |
 | |
|                               (((0x30 + t1) << 16) + ((0x30 + t2) << 24)));
 | |
|         t_len = 0x58;
 | |
|     } else {
 | |
|         ESP_LOGE(TAG, "Invalid t for SHA512/t, t = %u, must equal or less than 512", t);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     REG_WRITE(SHA_T_LENGTH_REG, t_len);
 | |
|     REG_WRITE(SHA_T_STRING_REG, t_string);
 | |
|     REG_WRITE(SHA_MODE_REG, SHA2_512T);
 | |
|     REG_WRITE(SHA_START_REG, 1);
 | |
| 
 | |
|     esp_sha_wait_idle();
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void esp_sha_fill_text_block(esp_sha_type sha_type, const void *input)
 | |
| {
 | |
|     uint32_t *reg_addr_buf = (uint32_t *)(SHA_TEXT_BASE);
 | |
|     uint32_t *data_words = NULL;
 | |
| 
 | |
|     /* Fill the data block */
 | |
|     data_words = (uint32_t *)(input);
 | |
|     for (int i = 0; i < block_length(sha_type) / 4; i++) {
 | |
|         reg_addr_buf[i] = (data_words[i]);
 | |
|     }
 | |
|     asm volatile ("memw");
 | |
| }
 | |
| 
 | |
| /* Hash a single SHA block */
 | |
| static void esp_sha_block(esp_sha_type sha_type, const void *input, bool is_first_block)
 | |
| {
 | |
|     esp_sha_fill_text_block(sha_type, input);
 | |
| 
 | |
|     esp_sha_wait_idle();
 | |
|     /* Start hashing */
 | |
|     if (is_first_block) {
 | |
|         REG_WRITE(SHA_START_REG, 1);
 | |
|     } else {
 | |
|         REG_WRITE(SHA_CONTINUE_REG, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Hash the input block by block, using non-DMA mode */
 | |
| static void esp_sha_block_mode(esp_sha_type sha_type, const uint8_t *input, uint32_t ilen,
 | |
|                                 const uint8_t *buf, uint32_t buf_len, bool is_first_block)
 | |
| {
 | |
|     size_t blk_len = 0;
 | |
|     int num_block = 0;
 | |
| 
 | |
|     blk_len = block_length(sha_type);
 | |
| 
 | |
|     REG_WRITE(SHA_MODE_REG, sha_type);
 | |
|     num_block = ilen / blk_len;
 | |
| 
 | |
|     if (buf_len != 0) {
 | |
|         esp_sha_block(sha_type, buf, is_first_block);
 | |
|         is_first_block = false;
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < num_block; i++) {
 | |
|         esp_sha_block(sha_type, input + blk_len*i, is_first_block);
 | |
|         is_first_block = false;
 | |
|     }
 | |
| 
 | |
|     esp_sha_wait_idle();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static int esp_sha_dma_process(esp_sha_type sha_type, const void *input, uint32_t ilen,
 | |
|                                 const void *buf, uint32_t buf_len, bool is_first_block);
 | |
| 
 | |
| /* Performs SHA on multiple blocks at a time using DMA
 | |
|    splits up into smaller operations for inputs that exceed a single DMA list
 | |
|  */
 | |
| int esp_sha_dma(esp_sha_type sha_type, const void *input, uint32_t ilen,
 | |
|                 const void *buf, uint32_t buf_len, bool is_first_block)
 | |
| {
 | |
|     int ret = 0;
 | |
|     unsigned char *dma_cap_buf = NULL;
 | |
|     int dma_op_num = ( ilen / (SHA_DMA_MAX_BYTES + 1) ) + 1;
 | |
| 
 | |
|     if (buf_len > block_length(sha_type)) {
 | |
|         ESP_LOGE(TAG, "SHA DMA buf_len cannot exceed max size for a single block");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* DMA cannot access memory in the iCache range, hash block by block instead of using DMA */
 | |
|     if (!esp_ptr_dma_ext_capable(input) && !esp_ptr_dma_capable(input) && (ilen != 0)) {
 | |
|         esp_sha_block_mode(sha_type, input, ilen, buf, buf_len, is_first_block);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
| #if (CONFIG_ESP32S2_SPIRAM_SUPPORT)
 | |
|     if (esp_ptr_external_ram(input)) {
 | |
|         Cache_WriteBack_Addr((uint32_t)input, ilen);
 | |
|     }
 | |
|     if (esp_ptr_external_ram(buf)) {
 | |
|         Cache_WriteBack_Addr((uint32_t)buf, buf_len);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* Copy to internal buf if buf is in non DMA capable memory */
 | |
|     if (!esp_ptr_dma_ext_capable(buf) && !esp_ptr_dma_capable(buf) && (buf_len != 0)) {
 | |
|         dma_cap_buf = heap_caps_malloc(sizeof(unsigned char) * buf_len, MALLOC_CAP_DMA);
 | |
|         if (dma_cap_buf == NULL) {
 | |
|             ESP_LOGE(TAG, "Failed to allocate buf memory");
 | |
|             ret = -1;
 | |
|             goto cleanup;
 | |
|         }
 | |
|         memcpy(dma_cap_buf, buf, buf_len);
 | |
|         buf = dma_cap_buf;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /* The max amount of blocks in a single hardware operation is 2^6 - 1 = 63
 | |
|        Thus we only do a single DMA input list + dma buf list,
 | |
|        which is max 3968/64 + 64/64 = 63 blocks */
 | |
|     for (int i = 0; i < dma_op_num; i++) {
 | |
| 
 | |
|         int dma_chunk_len = MIN(ilen, SHA_DMA_MAX_BYTES);
 | |
| 
 | |
|         ret = esp_sha_dma_process(sha_type, input, dma_chunk_len, buf, buf_len, is_first_block);
 | |
| 
 | |
|         if (ret != 0) {
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         ilen -= dma_chunk_len;
 | |
|         input += dma_chunk_len;
 | |
| 
 | |
|         // Only append buf to the first operation
 | |
|         buf_len = 0;
 | |
|         is_first_block = false;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     free(dma_cap_buf);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void esp_sha_dma_init(lldesc_t *input)
 | |
| {
 | |
|     /* Reset DMA */
 | |
|     SET_PERI_REG_MASK(CRYPTO_DMA_CONF0_REG, CONF0_REG_AHBM_RST | CONF0_REG_OUT_RST | CONF0_REG_AHBM_FIFO_RST);
 | |
|     CLEAR_PERI_REG_MASK(CRYPTO_DMA_CONF0_REG, CONF0_REG_AHBM_RST | CONF0_REG_OUT_RST | CONF0_REG_AHBM_FIFO_RST);
 | |
| 
 | |
|     /* Set descriptors */
 | |
|     CLEAR_PERI_REG_MASK(CRYPTO_DMA_OUT_LINK_REG, OUT_LINK_REG_OUTLINK_ADDR);
 | |
|     SET_PERI_REG_MASK(CRYPTO_DMA_OUT_LINK_REG, ((uint32_t)(input))&OUT_LINK_REG_OUTLINK_ADDR);
 | |
|     /* Start transfer */
 | |
|     SET_PERI_REG_MASK(CRYPTO_DMA_OUT_LINK_REG, OUT_LINK_REG_OUTLINK_START);
 | |
| }
 | |
| 
 | |
| /* Performs SHA on multiple blocks at a time */
 | |
| static esp_err_t esp_sha_dma_process(esp_sha_type sha_type, const void *input, uint32_t ilen,
 | |
|                                       const void *buf, uint32_t buf_len, bool is_first_block)
 | |
| {
 | |
|     size_t blk_len = 0;
 | |
|     int ret = 0;
 | |
|     lldesc_t dma_descr_input = {};
 | |
|     lldesc_t dma_descr_buf = {};
 | |
|     lldesc_t *dma_descr_head;
 | |
| 
 | |
|     blk_len = block_length(sha_type);
 | |
| 
 | |
|     REG_WRITE(SHA_MODE_REG, sha_type);
 | |
|     REG_WRITE(SHA_BLOCK_NUM_REG, ((ilen + buf_len) / blk_len));
 | |
| 
 | |
| 
 | |
|     /* DMA descriptor for Memory to DMA-SHA transfer */
 | |
|     if (ilen) {
 | |
|         dma_descr_input.length = ilen;
 | |
|         dma_descr_input.size = ilen;
 | |
|         dma_descr_input.owner = 1;
 | |
|         dma_descr_input.eof = 1;
 | |
|         dma_descr_input.buf = input;
 | |
|         dma_descr_head = &dma_descr_input;
 | |
|     }
 | |
|     /* Check after input to overide head if there is any buf*/
 | |
|     if (buf_len) {
 | |
|         dma_descr_buf.length = buf_len;
 | |
|         dma_descr_buf.size = buf_len;
 | |
|         dma_descr_buf.owner = 1;
 | |
|         dma_descr_buf.eof = 1;
 | |
|         dma_descr_buf.buf = buf;
 | |
|         dma_descr_head = &dma_descr_buf;
 | |
|     }
 | |
| 
 | |
|     /* Link DMA lists */
 | |
|     if (buf_len && ilen) {
 | |
|         dma_descr_buf.eof = 0;
 | |
|         dma_descr_buf.empty = (uint32_t)(&dma_descr_input);
 | |
|     }
 | |
| 
 | |
|     esp_sha_dma_init(dma_descr_head);
 | |
| 
 | |
|     /* Start hashing */
 | |
|     if (is_first_block) {
 | |
|         REG_WRITE(SHA_DMA_START_REG, 1);
 | |
|     } else {
 | |
|         REG_WRITE(SHA_DMA_CONTINUE_REG, 1);
 | |
|     }
 | |
| 
 | |
|     esp_sha_wait_idle();
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | 
