mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-30 20:51:41 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1060 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1060 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**
 | |
|  * \brief AES block cipher, ESP32-S2 hardware accelerated version
 | |
|  * Based on mbedTLS FIPS-197 compliant version.
 | |
|  *
 | |
|  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
 | |
|  *  Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd
 | |
|  *  SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 | |
|  *  not use this file except in compliance with the License.
 | |
|  *  You may obtain a copy of the License at
 | |
|  *
 | |
|  *  http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  *  Unless required by applicable law or agreed to in writing, software
 | |
|  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | |
|  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  *  See the License for the specific language governing permissions and
 | |
|  *  limitations under the License.
 | |
|  *
 | |
|  */
 | |
| /*
 | |
|  *  The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
 | |
|  *
 | |
|  *  http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
 | |
|  *  http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <string.h>
 | |
| #include <sys/lock.h>
 | |
| #include "mbedtls/aes.h"
 | |
| #include "esp32s3/aes.h"
 | |
| #include "soc/cpu.h"
 | |
| #include "soc/dport_reg.h"
 | |
| #include "soc/hwcrypto_reg.h"
 | |
| #include "soc/periph_defs.h"
 | |
| #include "esp32s3/rom/lldesc.h"
 | |
| #include "esp32s3/rom/cache.h"
 | |
| #include "esp_intr_alloc.h"
 | |
| #include "driver/periph_ctrl.h"
 | |
| #include "esp_log.h"
 | |
| #include "soc/lldesc.h"
 | |
| #include "esp_heap_caps.h"
 | |
| #include "sys/param.h"
 | |
| #include "esp_pm.h"
 | |
| #include "soc/soc_memory_layout.h"
 | |
| #include "soc/gdma_reg.h"
 | |
| #include "soc/gdma_struct.h"
 | |
| #include "soc/extmem_reg.h"
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "freertos/semphr.h"
 | |
| 
 | |
| #define AES_BLOCK_BYTES 16
 | |
| #define IV_WORDS        4
 | |
| 
 | |
| #define DMA_PERIPH_AES 6 /* DMA peripheral indexes */
 | |
| #define DMA_PERIPH_SHA 7
 | |
| /* Max size of each chunk to process when output buffer is in unaligned external ram
 | |
|    must be a multiple of block size
 | |
| */
 | |
| #define AES_MAX_CHUNK_WRITE_SIZE 1600
 | |
| 
 | |
| /* Input over this length will yield and wait for interrupt instead of
 | |
|    busy-waiting, 30000 bytes is approx 0.5 ms */
 | |
| #define AES_DMA_INTR_TRIG_LEN 2000
 | |
| 
 | |
| #define ESP_PUT_BE64(a, val)                                    \
 | |
|     do {                                                        \
 | |
|         *(uint64_t*)(a) = __builtin_bswap64( (uint64_t)(val) ); \
 | |
|     } while (0)
 | |
| 
 | |
| 
 | |
| /* DMA AES working modes*/
 | |
| typedef enum {
 | |
|     ESP_AES_BLOCK_MODE_ECB = 0,
 | |
|     ESP_AES_BLOCK_MODE_CBC,
 | |
|     ESP_AES_BLOCK_MODE_OFB,
 | |
|     ESP_AES_BLOCK_MODE_CTR,
 | |
|     ESP_AES_BLOCK_MODE_CFB8,
 | |
|     ESP_AES_BLOCK_MODE_CFB128,
 | |
| } esp_aes_mode_t;
 | |
| 
 | |
| 
 | |
| #if defined(CONFIG_MBEDTLS_AES_USE_INTERRUPT)
 | |
| static SemaphoreHandle_t op_complete_sem;
 | |
| #if defined(CONFIG_PM_ENABLE)
 | |
| static esp_pm_lock_handle_t s_pm_cpu_lock;
 | |
| static esp_pm_lock_handle_t s_pm_sleep_lock;
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| static const char *TAG = "esp-aes";
 | |
| 
 | |
| static _lock_t s_aes_lock;
 | |
| 
 | |
| static inline bool valid_key_length(const esp_aes_context *ctx)
 | |
| {
 | |
|     return ctx->key_bytes == 128 / 8  || ctx->key_bytes == 256 / 8;
 | |
| }
 | |
| 
 | |
| 
 | |
| void esp_aes_acquire_hardware( void )
 | |
| {
 | |
|     _lock_acquire(&s_aes_lock);
 | |
| 
 | |
|     /* Enable AES hardware */
 | |
|     //periph_module_enable(PERIPH_AES_DMA_MODULE);
 | |
|     /* Enable AES hardware */
 | |
|     REG_SET_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_CRYPTO_AES_CLK_EN | SYSTEM_DMA_CLK_EN);
 | |
|     /* Clear reset on digital signature unit,
 | |
|        otherwise AES unit is held in reset also. */
 | |
|     REG_CLR_BIT(SYSTEM_PERIP_RST_EN1_REG,
 | |
|                 SYSTEM_CRYPTO_AES_RST | SYSTEM_DMA_RST | SYSTEM_CRYPTO_DS_RST);
 | |
| }
 | |
| 
 | |
| /* Function to disable AES and Crypto DMA clocks and release locks */
 | |
| void esp_aes_release_hardware( void )
 | |
| {
 | |
|     /* Disable AES hardware */
 | |
|     //periph_module_disable(PERIPH_AES_DMA_MODULE);
 | |
|     /* Disable AES hardware */
 | |
|     REG_SET_BIT(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_CRYPTO_AES_RST | SYSTEM_DMA_RST);
 | |
|     /* Don't return other units to reset, as this pulls
 | |
|        reset on RSA & SHA units, respectively. */
 | |
|     REG_CLR_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_CRYPTO_AES_CLK_EN | SYSTEM_DMA_CLK_EN);
 | |
| 
 | |
|     _lock_release(&s_aes_lock);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Function to init AES context to zero */
 | |
| void esp_aes_init( esp_aes_context *ctx )
 | |
| {
 | |
|     if ( ctx == NULL ) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     bzero( ctx, sizeof( esp_aes_context ) );
 | |
| }
 | |
| 
 | |
| /* Function to clear AES context */
 | |
| void esp_aes_free( esp_aes_context *ctx )
 | |
| {
 | |
|     if ( ctx == NULL ) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     bzero( ctx, sizeof( esp_aes_context ) );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES key schedule (same for encryption or decryption, as hardware handles schedule)
 | |
|  *
 | |
|  */
 | |
| int esp_aes_setkey( esp_aes_context *ctx, const unsigned char *key,
 | |
|                     unsigned int keybits )
 | |
| {
 | |
|     if (keybits == 192) {
 | |
|         return MBEDTLS_ERR_AES_FEATURE_UNAVAILABLE;
 | |
|     }
 | |
|     if (keybits != 128  && keybits != 256) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
|     ctx->key_bytes = keybits / 8;
 | |
|     memcpy(ctx->key, key, ctx->key_bytes);
 | |
|     ctx->key_in_hardware = 0;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function to copy key from esp_aes_context buffer
 | |
|  * to hardware key registers.
 | |
|  *
 | |
|  * Call only while holding esp_aes_acquire_hardware().
 | |
|  */
 | |
| static void esp_aes_setkey_hardware( esp_aes_context *ctx, int crypt_mode)
 | |
| {
 | |
|     const uint32_t MODE_DECRYPT_BIT = 4;
 | |
|     unsigned mode_reg_base = (crypt_mode == ESP_AES_ENCRYPT) ? 0 : MODE_DECRYPT_BIT;
 | |
| 
 | |
|     ctx->key_in_hardware = 0;
 | |
| 
 | |
|     for (int i = 0; i < ctx->key_bytes / 4; ++i) {
 | |
|         REG_WRITE(AES_KEY_BASE + i * 4, *(((uint32_t *)ctx->key) + i));
 | |
|         ctx->key_in_hardware += 4;
 | |
|     }
 | |
| 
 | |
|     REG_WRITE(AES_MODE_REG, mode_reg_base + ((ctx->key_bytes / 8) - 2));
 | |
| 
 | |
|     /* Fault injection check: all words of key data should have been written to hardware */
 | |
|     if (ctx->key_in_hardware < 16
 | |
|             || ctx->key_in_hardware != ctx->key_bytes) {
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sets the AES DMA block mode (ECB, CBC, CFB, OFB, GCM, CTR)
 | |
|  * and intializes the required registers for that working mode
 | |
|  */
 | |
| static inline void esp_aes_mode_init(esp_aes_mode_t mode)
 | |
| {
 | |
|     /* Set the algorithm mode CBC, CFB ... */
 | |
|     REG_WRITE(AES_BLOCK_MODE_REG, mode);
 | |
| 
 | |
|     /* Presently hard-coding the INC function to 32 bit */
 | |
|     if (mode == ESP_AES_BLOCK_MODE_CTR) {
 | |
|         REG_WRITE(AES_INC_SEL_REG, 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write IV to hardware iv registers
 | |
|  */
 | |
| static inline void esp_aes_set_iv(uint8_t *iv)
 | |
| {
 | |
|     uint32_t *iv_words = (uint32_t *)iv;
 | |
|     uint32_t *reg_addr_buf = (uint32_t *)(AES_IV_BASE);
 | |
| 
 | |
|     for (int i = 0; i < IV_WORDS; i++ ) {
 | |
|         REG_WRITE(®_addr_buf[i], iv_words[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read IV from hardware iv registers
 | |
|  */
 | |
| static inline void esp_aes_get_iv(uint8_t *iv)
 | |
| {
 | |
|     esp_dport_access_read_buffer((uint32_t *)iv, AES_IV_BASE, IV_WORDS);
 | |
| }
 | |
| 
 | |
| 
 | |
| #if defined (CONFIG_MBEDTLS_AES_USE_INTERRUPT)
 | |
| static IRAM_ATTR void esp_aes_complete_isr(void *arg)
 | |
| {
 | |
|     BaseType_t higher_woken;
 | |
|     REG_WRITE(AES_INT_CLR_REG, 1);
 | |
|     xSemaphoreGiveFromISR(op_complete_sem, &higher_woken);
 | |
|     if (higher_woken) {
 | |
|         portYIELD_FROM_ISR();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static esp_err_t esp_aes_isr_initialise( void )
 | |
| {
 | |
|     REG_WRITE(AES_INT_CLR_REG, 1);
 | |
|     REG_WRITE(AES_INT_ENA_REG, 1);
 | |
|     if (op_complete_sem == NULL) {
 | |
|         op_complete_sem = xSemaphoreCreateBinary();
 | |
| 
 | |
|         if (op_complete_sem == NULL) {
 | |
|             ESP_LOGE(TAG, "Failed to create intr semaphore");
 | |
|             return ESP_FAIL;
 | |
|         }
 | |
| 
 | |
|         esp_intr_alloc(ETS_AES_INTR_SOURCE, 0, esp_aes_complete_isr, NULL, NULL);
 | |
|     }
 | |
| 
 | |
|     /* AES is clocked proportionally to CPU clock, take power management lock */
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
|     if (s_pm_cpu_lock == NULL) {
 | |
|         if (esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "aes_sleep", &s_pm_sleep_lock) != ESP_OK) {
 | |
|             ESP_LOGE(TAG, "Failed to create PM sleep lock");
 | |
|             return ESP_FAIL;
 | |
|         }
 | |
|         if (esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "aes_cpu", &s_pm_cpu_lock) != ESP_OK) {
 | |
|             ESP_LOGE(TAG, "Failed to create PM CPU lock");
 | |
|             return ESP_FAIL;
 | |
|         }
 | |
|     }
 | |
|     esp_pm_lock_acquire(s_pm_cpu_lock);
 | |
|     esp_pm_lock_acquire(s_pm_sleep_lock);
 | |
| #endif
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| #endif // CONFIG_MBEDTLS_AES_USE_INTERRUPT
 | |
| 
 | |
| /* Wait for AES hardware block operation to complete */
 | |
| static void esp_aes_dma_wait_complete(bool use_intr, lldesc_t *output_desc)
 | |
| {
 | |
|     __attribute__((unused)) volatile uint32_t dma_done;
 | |
| 
 | |
| #if defined (CONFIG_MBEDTLS_AES_USE_INTERRUPT)
 | |
|     if (use_intr) {
 | |
|         if (!xSemaphoreTake(op_complete_sem, 2000 / portTICK_PERIOD_MS)) {
 | |
|             /* indicates a fundamental problem with driver */
 | |
|             ESP_LOGE("AES", "Timed out waiting for completion of AES Interrupt");
 | |
|             abort();
 | |
|         }
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
|         esp_pm_lock_release(s_pm_cpu_lock);
 | |
|         esp_pm_lock_release(s_pm_sleep_lock);
 | |
| #endif  // CONFIG_PM_ENABLE
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* Checking this if interrupt is used also, to avoid
 | |
|        issues with AES fault injection
 | |
|     */
 | |
|     while (REG_READ(AES_STATE_REG) != AES_STATE_DONE) {
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /* Wait for DMA write operation to complete */
 | |
|     while (1) {
 | |
|         dma_done = REG_READ(CRYPTO_DMA_INT_RAW_REG);
 | |
|         // Wait for ownership of buffer to be transferred back to CPU
 | |
|         if (  (output_desc->owner == 0) ) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Init DMA related registers for AES operation */
 | |
| static void esp_aes_dma_init(lldesc_t *input, lldesc_t *output)
 | |
| {
 | |
|     /* Enable DMA mode */
 | |
|     REG_WRITE(AES_DMA_ENABLE_REG, 1);
 | |
|     REG_CLR_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_DMA_CLK_EN);
 | |
|     REG_SET_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_DMA_CLK_EN);
 | |
|     REG_SET_BIT(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_DMA_RST);
 | |
|     REG_CLR_BIT(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_DMA_RST);
 | |
| 
 | |
|     /* Initialize DMA registers - this is probably mostly one off initialization
 | |
| 
 | |
|          Note: hardcoded to DMA channel 0
 | |
|       */
 | |
|     /* Note: burst mode has alignment requirements that we have not checked here */
 | |
|     GDMA.conf0[0].outdscr_burst_en = 0;
 | |
|     GDMA.conf0[0].indscr_burst_en = 0;
 | |
|     GDMA.conf0[0].out_data_burst_en = 0;
 | |
|     GDMA.conf0[0].in_data_burst_en = 0;
 | |
| 
 | |
|     GDMA.peri_sel[0].peri_out_sel = DMA_PERIPH_AES;
 | |
|     GDMA.peri_sel[0].peri_in_sel = DMA_PERIPH_AES;
 | |
| 
 | |
|     /* Set descriptor addresses: NOTE BACKWARDS AS DMA IN/OUT is reverse of AES in/out */
 | |
|     GDMA.out_link[0].addr = (uint32_t)input;
 | |
|     GDMA.in_link[0].addr = (uint32_t)output;
 | |
| 
 | |
|     GDMA.sram_size[0].in_size = 3; /* 40 bytes, also minimum size for EDMA */
 | |
|     GDMA.sram_size[0].out_size = 3;
 | |
|     GDMA.conf1[0].in_ext_mem_bk_size = 0; // 16 bytes
 | |
|     GDMA.conf1[0].out_ext_mem_bk_size = 0; // 16 bytes
 | |
| 
 | |
|     /*
 | |
|       printf("DESC HEAD pointers IN/outlink %p OUT/inlink / %p\n", in_desc_head, out_desc_head);
 | |
| 
 | |
|       printf("before starting in_desc_head owner %d out_desc_head owner %d INT_RAW 0x%08x\n",
 | |
|       in_desc_head->owner,
 | |
|       out_desc_head->owner,
 | |
|       DMA.int_raw.val);
 | |
| 
 | |
|     */
 | |
| 
 | |
|     //REG_SET_BIT(EXTMEM_CACHE_MMU_OWNER_REG, 1<<23);  //mark PSRAM DCache as belonging to DMA
 | |
| 
 | |
|     GDMA.conf0[0].in_rst = 1;
 | |
|     GDMA.conf0[0].in_rst = 0;
 | |
|     GDMA.conf0[0].out_rst = 1;
 | |
|     GDMA.conf0[0].out_rst = 0;
 | |
| 
 | |
|     /* Start transfer */
 | |
|     GDMA.out_link[0].start = 1;
 | |
|     GDMA.in_link[0].start = 1;
 | |
| }
 | |
| 
 | |
| static int esp_aes_process_dma(esp_aes_context *ctx, const unsigned char *input, unsigned char *output, size_t len, uint8_t *stream_out);
 | |
| 
 | |
| 
 | |
| /* Output buffers in external ram needs to be 16-byte aligned and DMA cant access input in the iCache mem range,
 | |
|    reallocate them into internal memory and encrypt in chunks to avoid
 | |
|    having to malloc too big of a buffer
 | |
| */
 | |
| 
 | |
| static int esp_aes_process_dma_ext_ram(esp_aes_context *ctx, const unsigned char *input, unsigned char *output, size_t len, uint8_t *stream_out, bool realloc_input, bool realloc_output)
 | |
| {
 | |
|     size_t chunk_len;
 | |
|     int ret = 0;
 | |
|     int offset = 0;
 | |
|     unsigned char *input_buf = NULL;
 | |
|     unsigned char *output_buf = NULL;
 | |
|     const unsigned char *dma_input;
 | |
|     chunk_len = MIN(AES_MAX_CHUNK_WRITE_SIZE, len);
 | |
| 
 | |
|     if (realloc_input) {
 | |
|         input_buf = heap_caps_malloc(chunk_len, MALLOC_CAP_DMA);
 | |
| 
 | |
|         if (input_buf == NULL) {
 | |
|             ESP_LOGE(TAG, "Failed to allocate memory");
 | |
|             ret = -1;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (realloc_output) {
 | |
|         output_buf = heap_caps_malloc(chunk_len, MALLOC_CAP_DMA);
 | |
| 
 | |
|         if (output_buf == NULL) {
 | |
|             ESP_LOGE(TAG, "Failed to allocate memory");
 | |
|             ret = -1;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     } else {
 | |
|         output_buf = output;
 | |
|     }
 | |
| 
 | |
|     while (len) {
 | |
|         chunk_len = MIN(AES_MAX_CHUNK_WRITE_SIZE, len);
 | |
| 
 | |
|         /* If input needs realloc then copy it, else use the input with offset*/
 | |
|         if (realloc_input) {
 | |
|             memcpy(input_buf, input + offset, chunk_len);
 | |
|             dma_input = input_buf;
 | |
|         } else {
 | |
|             dma_input = input + offset;
 | |
|         }
 | |
| 
 | |
|         if (esp_aes_process_dma(ctx, dma_input, output_buf, chunk_len, stream_out) != 0) {
 | |
|             ret = -1;
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         if (realloc_output) {
 | |
|             memcpy(output + offset, output_buf, chunk_len);
 | |
|         } else {
 | |
|             output_buf = output + offset + chunk_len;
 | |
|         }
 | |
| 
 | |
|         len -= chunk_len;
 | |
|         offset += chunk_len;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     if (realloc_input) {
 | |
|         free(input_buf);
 | |
|     }
 | |
|     if (realloc_output) {
 | |
|         free(output_buf);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Encrypt/decrypt the input using DMA */
 | |
| static int esp_aes_process_dma(esp_aes_context *ctx, const unsigned char *input, unsigned char *output, size_t len, uint8_t *stream_out)
 | |
| {
 | |
|     lldesc_t stream_in_desc, stream_out_desc;
 | |
|     lldesc_t *in_desc_head, *out_desc_head;
 | |
|     lldesc_t *block_desc = NULL, *block_in_desc, *block_out_desc;
 | |
|     size_t lldesc_num;
 | |
|     uint8_t stream_in[16] = {};
 | |
|     unsigned stream_bytes = len % AES_BLOCK_BYTES; // bytes which aren't in a full block
 | |
|     unsigned block_bytes = len - stream_bytes;     // bytes which are in a full block
 | |
|     unsigned char *non_icache_input = NULL;
 | |
|     unsigned blocks = (block_bytes / AES_BLOCK_BYTES) + ((stream_bytes > 0) ? 1 : 0);
 | |
|     bool use_intr = false;
 | |
|     bool input_needs_realloc = false;
 | |
|     bool output_needs_realloc = false;
 | |
|     int ret = 0;
 | |
| 
 | |
|     assert(len > 0); // caller shouldn't ever have len set to zero
 | |
|     assert(stream_bytes == 0 || stream_out != NULL); // stream_out can be NULL if we're processing full block(s)
 | |
| 
 | |
|     /* If no key is written to hardware yet, either the user hasn't called
 | |
|        mbedtls_aes_setkey_enc/mbedtls_aes_setkey_dec - meaning we also don't
 | |
|        know which mode to use - or a fault skipped the
 | |
|        key write to hardware. Treat this as a fatal error and zero the output block.
 | |
|     */
 | |
|     if (ctx->key_in_hardware != ctx->key_bytes) {
 | |
|         bzero(output, len);
 | |
|         return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
 | |
|     }
 | |
| 
 | |
|     if (block_bytes > 0) {
 | |
|         /* Flush cache if input in external ram */
 | |
| #if (CONFIG_SPIRAM_USE_CAPS_ALLOC || CONFIG_SPIRAM_USE_MALLOC)
 | |
|         if (esp_ptr_external_ram(input)) {
 | |
|             Cache_WriteBack_All();
 | |
|         }
 | |
|         if (esp_ptr_external_ram(output)) {
 | |
|             if (((intptr_t)(output) & 0xF) != 0) {
 | |
|                 // Non aligned ext-mem buffer
 | |
|                 output_needs_realloc = true;
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
|         /* DMA cannot access memory in the iCache range, copy input to internal ram */
 | |
|         if (!esp_ptr_dma_ext_capable(input) && !esp_ptr_dma_capable(input)) {
 | |
|             input_needs_realloc = true;
 | |
|         }
 | |
| 
 | |
|         if (!esp_ptr_dma_ext_capable(output) && !esp_ptr_dma_capable(output)) {
 | |
|             output_needs_realloc = true;
 | |
|         }
 | |
| 
 | |
|         /* If either input or output is unaccessible to the DMA then they need to be reallocated */
 | |
|         if (input_needs_realloc || output_needs_realloc) {
 | |
|             return esp_aes_process_dma_ext_ram(ctx, input, output, len, stream_out, input_needs_realloc, output_needs_realloc);
 | |
|         }
 | |
| 
 | |
| 
 | |
|         /* Set up dma descriptors for input and output */
 | |
|         lldesc_num = lldesc_get_required_num(block_bytes);
 | |
| 
 | |
|         /* Allocate both in and out descriptors to save a malloc/free per function call */
 | |
|         block_desc = heap_caps_malloc(sizeof(lldesc_t) * lldesc_num * 2, MALLOC_CAP_DMA);
 | |
|         if (block_desc == NULL) {
 | |
|             ESP_LOGE(TAG, "Failed to allocate memory");
 | |
|             ret = -1;
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         block_in_desc = block_desc;
 | |
|         block_out_desc = block_desc + lldesc_num;
 | |
| 
 | |
|         lldesc_setup_link(block_desc, input, block_bytes, 0);
 | |
|         lldesc_setup_link(block_desc + lldesc_num, output, block_bytes, 0);
 | |
|     }
 | |
| 
 | |
|     /* Any leftover bytes which are appended as an additional DMA list */
 | |
|     if (stream_bytes > 0) {
 | |
|         memcpy(stream_in, input + block_bytes, stream_bytes);
 | |
| 
 | |
|         lldesc_setup_link(&stream_in_desc, stream_in, AES_BLOCK_BYTES, 0);
 | |
|         lldesc_setup_link(&stream_out_desc, stream_out, AES_BLOCK_BYTES, 0);
 | |
| 
 | |
|         if (block_bytes > 0) {
 | |
|             /* Link with block descriptors*/
 | |
|             block_in_desc[lldesc_num - 1].empty = (uint32_t)&stream_in_desc;
 | |
|             block_out_desc[lldesc_num - 1].empty = (uint32_t)&stream_out_desc;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // block buffers are sent to DMA first, unless there aren't any
 | |
|     in_desc_head =  (block_bytes > 0) ? block_in_desc : &stream_in_desc;
 | |
|     out_desc_head = (block_bytes > 0) ? block_out_desc : &stream_out_desc;
 | |
| 
 | |
|     esp_aes_dma_init(in_desc_head, out_desc_head);
 | |
| 
 | |
|     /* Write the number of blocks */
 | |
|     REG_WRITE(AES_BLOCK_NUM_REG, blocks);
 | |
| 
 | |
| 
 | |
| #if defined (CONFIG_MBEDTLS_AES_USE_INTERRUPT)
 | |
|     /* Only use interrupt for long AES operations */
 | |
|     if (len > AES_DMA_INTR_TRIG_LEN) {
 | |
|         use_intr = true;
 | |
|         if (esp_aes_isr_initialise() == ESP_FAIL) {
 | |
|             ret = -1;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     } else
 | |
| #endif
 | |
|     {
 | |
|         REG_WRITE(AES_INT_ENA_REG, 0);
 | |
|     }
 | |
| 
 | |
|     /* Start AES operation */
 | |
|     REG_WRITE(AES_TRIGGER_REG, 1);
 | |
|     esp_aes_dma_wait_complete(use_intr, out_desc_head);
 | |
| 
 | |
| 
 | |
| 
 | |
| #if (CONFIG_SPIRAM_USE_CAPS_ALLOC || CONFIG_SPIRAM_USE_MALLOC)
 | |
|     if (block_bytes > 0) {
 | |
|         if (esp_ptr_external_ram(output)) {
 | |
|             Cache_Invalidate_DCache_All();
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     REG_WRITE(AES_DMA_EXIT_REG, 0);
 | |
|     /* Disable DMA mode */
 | |
|     REG_WRITE(AES_DMA_ENABLE_REG, 0);
 | |
| 
 | |
|     if (stream_bytes > 0) {
 | |
|         memcpy(output + block_bytes, stream_out, stream_bytes);
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     free(non_icache_input);
 | |
|     free(block_desc);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int esp_aes_validate_input(esp_aes_context *ctx, const unsigned char *input,
 | |
|                                   unsigned char *output )
 | |
| {
 | |
|     if (!ctx) {
 | |
|         ESP_LOGE(TAG, "No AES context supplied");
 | |
|         return -1;
 | |
|     }
 | |
|     if (!input) {
 | |
|         ESP_LOGE(TAG, "No input supplied");
 | |
|         return -1;
 | |
|     }
 | |
|     if (!output) {
 | |
|         ESP_LOGE(TAG, "No output supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * AES-ECB single block encryption
 | |
|  */
 | |
| int esp_internal_aes_encrypt( esp_aes_context *ctx,
 | |
|                               const unsigned char input[16],
 | |
|                               unsigned char output[16] )
 | |
| {
 | |
|     int r;
 | |
| 
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     esp_aes_acquire_hardware();
 | |
|     ctx->key_in_hardware = 0;
 | |
|     esp_aes_setkey_hardware(ctx, ESP_AES_ENCRYPT);
 | |
|     esp_aes_mode_init(ESP_AES_BLOCK_MODE_ECB);
 | |
|     r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
 | |
|     esp_aes_release_hardware();
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| void esp_aes_encrypt( esp_aes_context *ctx,
 | |
|                       const unsigned char input[16],
 | |
|                       unsigned char output[16] )
 | |
| {
 | |
|     esp_internal_aes_encrypt(ctx, input, output);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-ECB single block decryption
 | |
|  */
 | |
| int esp_internal_aes_decrypt( esp_aes_context *ctx,
 | |
|                               const unsigned char input[16],
 | |
|                               unsigned char output[16] )
 | |
| {
 | |
|     int r;
 | |
| 
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     esp_aes_acquire_hardware();
 | |
|     ctx->key_in_hardware = 0;
 | |
|     esp_aes_setkey_hardware(ctx, ESP_AES_DECRYPT);
 | |
|     esp_aes_mode_init(ESP_AES_BLOCK_MODE_ECB);
 | |
|     r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
 | |
|     esp_aes_release_hardware();
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| void esp_aes_decrypt( esp_aes_context *ctx,
 | |
|                       const unsigned char input[16],
 | |
|                       unsigned char output[16] )
 | |
| {
 | |
|     esp_internal_aes_decrypt(ctx, input, output);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * AES-ECB block encryption/decryption
 | |
|  */
 | |
| int esp_aes_crypt_ecb( esp_aes_context *ctx,
 | |
|                        int mode,
 | |
|                        const unsigned char input[16],
 | |
|                        unsigned char output[16] )
 | |
| {
 | |
|     int r;
 | |
| 
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     esp_aes_acquire_hardware();
 | |
|     ctx->key_in_hardware = 0;
 | |
|     esp_aes_setkey_hardware(ctx, mode);
 | |
|     esp_aes_mode_init(ESP_AES_BLOCK_MODE_ECB);
 | |
|     r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
 | |
|     esp_aes_release_hardware();
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-CBC buffer encryption/decryption
 | |
|  */
 | |
| int esp_aes_crypt_cbc( esp_aes_context *ctx,
 | |
|                        int mode,
 | |
|                        size_t length,
 | |
|                        unsigned char iv[16],
 | |
|                        const unsigned char *input,
 | |
|                        unsigned char *output )
 | |
| {
 | |
|     int r = 0;
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!iv) {
 | |
|         ESP_LOGE(TAG, "No IV supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* For CBC input length should be multiple of
 | |
|      * AES BLOCK BYTES
 | |
|      * */
 | |
|     if ( (length % AES_BLOCK_BYTES) || (length == 0) ) {
 | |
|         return ERR_ESP_AES_INVALID_INPUT_LENGTH;
 | |
|     }
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     esp_aes_acquire_hardware();
 | |
|     ctx->key_in_hardware = 0;
 | |
|     esp_aes_setkey_hardware(ctx, mode);
 | |
|     esp_aes_mode_init(ESP_AES_BLOCK_MODE_CBC);
 | |
|     esp_aes_set_iv(iv);
 | |
| 
 | |
|     r = esp_aes_process_dma(ctx, input, output, length, NULL);
 | |
|     if (r != 0) {
 | |
|         esp_aes_release_hardware();
 | |
|         return r;
 | |
|     }
 | |
| 
 | |
|     esp_aes_get_iv(iv);
 | |
|     esp_aes_release_hardware();
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-CFB8 buffer encryption/decryption
 | |
|  */
 | |
| int esp_aes_crypt_cfb8( esp_aes_context *ctx,
 | |
|                         int mode,
 | |
|                         size_t length,
 | |
|                         unsigned char iv[16],
 | |
|                         const unsigned char *input,
 | |
|                         unsigned char *output )
 | |
| {
 | |
|     unsigned char c;
 | |
|     unsigned char ov[17];
 | |
|     int r = 0;
 | |
|     size_t block_bytes = length - (length % AES_BLOCK_BYTES);
 | |
| 
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!iv) {
 | |
|         ESP_LOGE(TAG, "No IV supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     /* The DMA engine will only output correct IV if it runs
 | |
|        full blocks of input in CFB8 mode
 | |
|     */
 | |
|     esp_aes_acquire_hardware();
 | |
| 
 | |
|     if (block_bytes > 0) {
 | |
| 
 | |
|         ctx->key_in_hardware = 0;
 | |
|         esp_aes_setkey_hardware(ctx, mode);
 | |
|         esp_aes_mode_init(ESP_AES_BLOCK_MODE_CFB8);
 | |
|         esp_aes_set_iv(iv);
 | |
|         r = esp_aes_process_dma(ctx, input, output, block_bytes, NULL);
 | |
|         esp_aes_get_iv(iv);
 | |
| 
 | |
|         if (r != 0) {
 | |
|             esp_aes_release_hardware();
 | |
|             return r;
 | |
|         }
 | |
| 
 | |
|         length -= block_bytes;
 | |
|         input += block_bytes;
 | |
|         output += block_bytes;
 | |
|     }
 | |
| 
 | |
|     // Process remaining bytes block-at-a-time in ECB mode
 | |
|     if (length > 0) {
 | |
|         ctx->key_in_hardware = 0;
 | |
|         esp_aes_setkey_hardware(ctx, MBEDTLS_AES_ENCRYPT);
 | |
|         esp_aes_mode_init(ESP_AES_BLOCK_MODE_ECB);
 | |
| 
 | |
|         while ( length-- ) {
 | |
|             memcpy( ov, iv, 16 );
 | |
| 
 | |
|             r = esp_aes_process_dma(ctx, iv, iv, AES_BLOCK_BYTES, NULL);
 | |
|             if (r != 0) {
 | |
|                 esp_aes_release_hardware();
 | |
|                 return r;
 | |
|             }
 | |
| 
 | |
|             if ( mode == MBEDTLS_AES_DECRYPT ) {
 | |
|                 ov[16] = *input;
 | |
|             }
 | |
| 
 | |
|             c = *output++ = ( iv[0] ^ *input++ );
 | |
| 
 | |
|             if ( mode == MBEDTLS_AES_ENCRYPT ) {
 | |
|                 ov[16] = c;
 | |
|             }
 | |
|             memcpy( iv, ov + 1, 16 );
 | |
|         }
 | |
| 
 | |
|     }
 | |
|     esp_aes_release_hardware();
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-CFB128 buffer encryption/decryption
 | |
|  */
 | |
| int esp_aes_crypt_cfb128( esp_aes_context *ctx,
 | |
|                           int mode,
 | |
|                           size_t length,
 | |
|                           size_t *iv_off,
 | |
|                           unsigned char iv[16],
 | |
|                           const unsigned char *input,
 | |
|                           unsigned char *output )
 | |
| 
 | |
| {
 | |
|     uint8_t c;
 | |
|     int r = 0;
 | |
|     size_t stream_bytes = 0;
 | |
|     size_t n;
 | |
| 
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!iv) {
 | |
|         ESP_LOGE(TAG, "No IV supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!iv_off) {
 | |
|         ESP_LOGE(TAG, "No IV offset supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     n = *iv_off;
 | |
| 
 | |
|     /* First process the *iv_off bytes
 | |
|      * which are pending from the previous call to this API
 | |
|      */
 | |
|     while (n > 0 && length > 0) {
 | |
|         if (mode == MBEDTLS_AES_ENCRYPT) {
 | |
|             iv[n] = *output++ = *input++ ^ iv[n];
 | |
|         } else {
 | |
|             c = *input++;
 | |
|             *output++ = c ^ iv[n];
 | |
|             iv[n] = c;
 | |
|         }
 | |
|         n = (n + 1) % AES_BLOCK_BYTES;
 | |
|         length--;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     if (length > 0) {
 | |
|         stream_bytes = length % AES_BLOCK_BYTES;
 | |
|         esp_aes_acquire_hardware();
 | |
|         ctx->key_in_hardware = 0;
 | |
|         esp_aes_setkey_hardware(ctx, mode);
 | |
|         esp_aes_mode_init(ESP_AES_BLOCK_MODE_CFB128);
 | |
|         esp_aes_set_iv(iv);
 | |
| 
 | |
|         r = esp_aes_process_dma(ctx, input, output, length, iv);
 | |
|         if (r != 0) {
 | |
|             esp_aes_release_hardware();
 | |
|             return r;
 | |
|         }
 | |
| 
 | |
|         if (stream_bytes == 0) {
 | |
|             // if we didn't need the partial 'stream block' then the new IV is in the IV register
 | |
|             esp_aes_get_iv(iv);
 | |
|         } else {
 | |
|             // if we did process a final partial block the new IV is already processed via DMA (and has some bytes of output in it),
 | |
|             // In decrypt mode any partial bytes are output plaintext (iv ^ c) and need to be swapped back to ciphertext (as the next
 | |
|             // block uses ciphertext as its IV input)
 | |
|             //
 | |
|             // Note: It may be more efficient to not process the partial block via DMA in this case.
 | |
|             if (mode == MBEDTLS_AES_DECRYPT) {
 | |
|                 memcpy(iv, input + length - stream_bytes, stream_bytes);
 | |
|             }
 | |
|         }
 | |
|         esp_aes_release_hardware();
 | |
|     }
 | |
| 
 | |
|     *iv_off = n + stream_bytes;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-OFB (Output Feedback Mode) buffer encryption/decryption
 | |
|  */
 | |
| 
 | |
| int esp_aes_crypt_ofb( esp_aes_context *ctx,
 | |
|                        size_t length,
 | |
|                        size_t *iv_off,
 | |
|                        unsigned char iv[16],
 | |
|                        const unsigned char *input,
 | |
|                        unsigned char *output )
 | |
| {
 | |
|     int r = 0;
 | |
|     size_t n;
 | |
|     size_t stream_bytes = 0;
 | |
| 
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!iv) {
 | |
|         ESP_LOGE(TAG, "No IV supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!iv_off) {
 | |
|         ESP_LOGE(TAG, "No IV offset supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     n = *iv_off;
 | |
| 
 | |
|     /* If there is an offset then use the output of the previous AES block
 | |
|         (the updated IV) to calculate the new output */
 | |
|     while (n > 0 && length > 0) {
 | |
|         *output++ = (*input++ ^ iv[n]);
 | |
|         n = (n + 1) & 0xF;
 | |
|         length--;
 | |
|     }
 | |
|     if (length > 0) {
 | |
|         stream_bytes = (length % AES_BLOCK_BYTES);
 | |
| 
 | |
|         esp_aes_acquire_hardware();
 | |
|         ctx->key_in_hardware = 0;
 | |
|         esp_aes_setkey_hardware(ctx, ESP_AES_DECRYPT);
 | |
|         esp_aes_mode_init(ESP_AES_BLOCK_MODE_OFB);
 | |
|         esp_aes_set_iv(iv);
 | |
| 
 | |
|         r = esp_aes_process_dma(ctx, input, output, length, iv);
 | |
|         if (r != 0) {
 | |
|             esp_aes_release_hardware();
 | |
|             return r;
 | |
|         }
 | |
| 
 | |
|         esp_aes_get_iv(iv);
 | |
|         esp_aes_release_hardware();
 | |
|     }
 | |
| 
 | |
|     *iv_off = n + stream_bytes;
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-CTR buffer encryption/decryption
 | |
|  */
 | |
| int esp_aes_crypt_ctr( esp_aes_context *ctx,
 | |
|                        size_t length,
 | |
|                        size_t *nc_off,
 | |
|                        unsigned char nonce_counter[16],
 | |
|                        unsigned char stream_block[16],
 | |
|                        const unsigned char *input,
 | |
|                        unsigned char *output )
 | |
| {
 | |
|     int r = 0;
 | |
|     size_t n;
 | |
| 
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!nonce_counter) {
 | |
|         ESP_LOGE(TAG, "No nonce supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!nc_off) {
 | |
|         ESP_LOGE(TAG, "No nonce offset supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     n = *nc_off;
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     /* Process any unprocessed bytes left in stream block from
 | |
|        last operation */
 | |
|     while (n > 0 && length > 0) {
 | |
|         *output++ = (unsigned char)(*input++ ^ stream_block[n]);
 | |
|         n = (n + 1) & 0xF;
 | |
|         length--;
 | |
|     }
 | |
| 
 | |
|     if (length > 0) {
 | |
| 
 | |
|         esp_aes_acquire_hardware();
 | |
|         ctx->key_in_hardware = 0;
 | |
|         esp_aes_setkey_hardware(ctx, ESP_AES_DECRYPT);
 | |
| 
 | |
|         esp_aes_mode_init(ESP_AES_BLOCK_MODE_CTR);
 | |
|         esp_aes_set_iv(nonce_counter);
 | |
| 
 | |
|         r = esp_aes_process_dma(ctx, input, output, length, stream_block);
 | |
| 
 | |
|         if (r != 0) {
 | |
|             esp_aes_release_hardware();
 | |
|             return r;
 | |
|         }
 | |
| 
 | |
|         esp_aes_get_iv(nonce_counter);
 | |
| 
 | |
|         esp_aes_release_hardware();
 | |
| 
 | |
|     }
 | |
|     *nc_off = n + (length % AES_BLOCK_BYTES);
 | |
| 
 | |
|     return r;
 | |
| }
 |