mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 21:14:37 +00:00 
			
		
		
		
	 197f6e40da
			
		
	
	197f6e40da
	
	
	
		
			
			This commit fixes a bug in the PSRAM heap initialization that didn't take into account the reserved himem area when registering the PSRAM virtual space as a heap.
		
			
				
	
	
		
			471 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			471 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  */
 | |
| 
 | |
| 
 | |
| /*----------------------------------------------------------------------------------------------------
 | |
|  * Abstraction layer for PSRAM. PSRAM device related registers and MMU/Cache related code shouls be
 | |
|  * abstracted to lower layers.
 | |
|  *
 | |
|  * When we add more types of external RAM memory, this can be made into a more intelligent dispatcher.
 | |
|  *----------------------------------------------------------------------------------------------------*/
 | |
| #include <sys/param.h>
 | |
| #include "sdkconfig.h"
 | |
| #include "esp_attr.h"
 | |
| #include "esp_err.h"
 | |
| #include "esp_log.h"
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "freertos/xtensa_api.h"
 | |
| #include "esp_heap_caps_init.h"
 | |
| #include "hal/mmu_hal.h"
 | |
| #include "hal/cache_ll.h"
 | |
| #include "esp_private/esp_psram_io.h"
 | |
| #include "esp_private/esp_psram_extram.h"
 | |
| #include "esp_private/mmu_psram_flash.h"
 | |
| #include "esp_psram_impl.h"
 | |
| #include "esp_psram.h"
 | |
| #include "esp_private/esp_mmu_map_private.h"
 | |
| #include "esp_mmu_map.h"
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
| #include "esp32/himem.h"
 | |
| #include "esp32/rom/cache.h"
 | |
| #include "esp_private/esp_cache_esp32_private.h"
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
| #if CONFIG_FREERTOS_UNICORE
 | |
| #define PSRAM_MODE PSRAM_VADDR_MODE_NORMAL
 | |
| #else
 | |
| #define PSRAM_MODE PSRAM_VADDR_MODE_LOWHIGH
 | |
| #endif
 | |
| #else
 | |
| #define PSRAM_MODE PSRAM_VADDR_MODE_NORMAL
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * Two types of PSRAM memory regions for now:
 | |
|  * - 8bit aligned
 | |
|  * - 32bit aligned
 | |
|  */
 | |
| #define PSRAM_MEM_TYPE_NUM          2
 | |
| #define PSRAM_MEM_8BIT_ALIGNED      0
 | |
| #define PSRAM_MEM_32BIT_ALIGNED     1
 | |
| 
 | |
| #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
 | |
| extern uint8_t _ext_ram_bss_start;
 | |
| extern uint8_t _ext_ram_bss_end;
 | |
| #endif //#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
 | |
| 
 | |
| #if CONFIG_SPIRAM_ALLOW_NOINIT_SEG_EXTERNAL_MEMORY
 | |
| extern uint8_t _ext_ram_noinit_start;
 | |
| extern uint8_t _ext_ram_noinit_end;
 | |
| #endif  //#if CONFIG_SPIRAM_ALLOW_NOINIT_SEG_EXTERNAL_MEMORY
 | |
| 
 | |
| typedef struct {
 | |
|     intptr_t vaddr_start;
 | |
|     intptr_t vaddr_end;
 | |
|     size_t size;        //in bytes
 | |
| } psram_mem_t;
 | |
| 
 | |
| typedef struct {
 | |
|     bool is_initialised;
 | |
|     /**
 | |
|      * @note 1
 | |
|      * As we can't use heap allocator during this stage, we need to statically declare these regions.
 | |
|      * Luckily only S2 has two different types of memory regions:
 | |
|      * - byte-aligned memory
 | |
|      * - word-aligned memory
 | |
|      * On the other hand, the type number usually won't be very big
 | |
|      *
 | |
|      * On other chips, only one region is needed.
 | |
|      * So for chips other than S2, size of `regions_to_heap[1]` and `mapped_regions[1]`will always be zero.
 | |
|      *
 | |
|      * If in the future, this condition is worse (dbus memory isn't consecutive), we need to delegate this context
 | |
|      * to chip-specific files, and only keep a (void *) pointer here pointing to those chip-specific contexts
 | |
|      */
 | |
|     psram_mem_t regions_to_heap[PSRAM_MEM_TYPE_NUM];     //memory regions that are available to be added to the heap allocator
 | |
|     psram_mem_t mapped_regions[PSRAM_MEM_TYPE_NUM];      //mapped memory regions
 | |
| } psram_ctx_t;
 | |
| 
 | |
| static psram_ctx_t s_psram_ctx;
 | |
| static const char* TAG = "esp_psram";
 | |
| 
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
| //If no function in esp_himem.c is used, this function will be linked into the
 | |
| //binary instead of the one in esp_himem.c, automatically making sure no memory
 | |
| //is reserved if no himem function is used.
 | |
| size_t __attribute__((weak)) esp_himem_reserved_area_size(void) {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void IRAM_ATTR s_mapping(int v_start, int size)
 | |
| {
 | |
|     //Enable external RAM in MMU
 | |
|     cache_sram_mmu_set(0, 0, v_start, 0, 32, (size / 1024 / 32));
 | |
|     //Flush and enable icache for APP CPU
 | |
| #if !CONFIG_FREERTOS_UNICORE
 | |
|     DPORT_CLEAR_PERI_REG_MASK(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DRAM1);
 | |
|     cache_sram_mmu_set(1, 0, v_start, 0, 32, (size / 1024 / 32));
 | |
| #endif
 | |
| }
 | |
| #endif  //CONFIG_IDF_TARGET_ESP32
 | |
| 
 | |
| 
 | |
| esp_err_t esp_psram_init(void)
 | |
| {
 | |
|     if (s_psram_ctx.is_initialised) {
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
| 
 | |
|     esp_err_t ret = ESP_FAIL;
 | |
|     ret = esp_psram_impl_enable(PSRAM_MODE);
 | |
|     if (ret != ESP_OK) {
 | |
| #if CONFIG_SPIRAM_IGNORE_NOTFOUND
 | |
|         ESP_EARLY_LOGE(TAG, "PSRAM enabled but initialization failed. Bailing out.");
 | |
| #endif
 | |
|         return ret;
 | |
|     }
 | |
|     s_psram_ctx.is_initialised = true;
 | |
| 
 | |
|     uint32_t psram_physical_size = 0;
 | |
|     ret = esp_psram_impl_get_physical_size(&psram_physical_size);
 | |
|     assert(ret == ESP_OK);
 | |
| 
 | |
|     ESP_EARLY_LOGI(TAG, "Found %dMB PSRAM device", psram_physical_size / (1024 * 1024));
 | |
|     ESP_EARLY_LOGI(TAG, "Speed: %dMHz", CONFIG_SPIRAM_SPEED);
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     ESP_EARLY_LOGI(TAG, "PSRAM initialized, cache is in %s mode.", \
 | |
|                                           (PSRAM_MODE==PSRAM_VADDR_MODE_EVENODD)?"even/odd (2-core)": \
 | |
|                                           (PSRAM_MODE==PSRAM_VADDR_MODE_LOWHIGH)?"low/high (2-core)": \
 | |
|                                           (PSRAM_MODE==PSRAM_VADDR_MODE_NORMAL)?"normal (1-core)":"ERROR");
 | |
| #endif
 | |
| 
 | |
|     uint32_t psram_available_size = 0;
 | |
|     ret = esp_psram_impl_get_available_size(&psram_available_size);
 | |
|     assert(ret == ESP_OK);
 | |
| 
 | |
|     __attribute__((unused)) uint32_t total_available_size = psram_available_size;
 | |
|     /**
 | |
|      * `start_page` is the psram physical address in MMU page size.
 | |
|      * MMU page size on ESP32S2 is 64KB
 | |
|      * e.g.: psram physical address 16 is in page 0
 | |
|      *
 | |
|      * Here we plan to copy FLASH instructions to psram physical address 0, which is the No.0 page.
 | |
|      */
 | |
|     __attribute__((unused)) uint32_t start_page = 0;
 | |
| #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA
 | |
|     uint32_t used_page = 0;
 | |
| #endif
 | |
| 
 | |
|     //------------------------------------Copy Flash .text to PSRAM-------------------------------------//
 | |
| #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
 | |
|     ret = mmu_config_psram_text_segment(start_page, total_available_size, &used_page);
 | |
|     if (ret != ESP_OK) {
 | |
|         ESP_EARLY_LOGE(TAG, "No enough psram memory for instructon!");
 | |
|         abort();
 | |
|     }
 | |
|     start_page += used_page;
 | |
|     psram_available_size -= MMU_PAGE_TO_BYTES(used_page);
 | |
|     ESP_EARLY_LOGV(TAG, "after copy .text, used page is %d, start_page is %d, psram_available_size is %d B", used_page, start_page, psram_available_size);
 | |
| #endif  //#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
 | |
| 
 | |
|     //------------------------------------Copy Flash .rodata to PSRAM-------------------------------------//
 | |
| #if CONFIG_SPIRAM_RODATA
 | |
|     ret = mmu_config_psram_rodata_segment(start_page, total_available_size, &used_page);
 | |
|     if (ret != ESP_OK) {
 | |
|         ESP_EARLY_LOGE(TAG, "No enough psram memory for rodata!");
 | |
|         abort();
 | |
|     }
 | |
|     start_page += used_page;
 | |
|     psram_available_size -= MMU_PAGE_TO_BYTES(used_page);
 | |
|     ESP_EARLY_LOGV(TAG, "after copy .rodata, used page is %d, start_page is %d, psram_available_size is %d B", used_page, start_page, psram_available_size);
 | |
| #endif  //#if CONFIG_SPIRAM_RODATA
 | |
| 
 | |
|     //----------------------------------Map the PSRAM physical range to MMU-----------------------------//
 | |
|     /**
 | |
|      * @note 2
 | |
|      * Similarly to @note 1, we expect HW DBUS memory to be consecutive.
 | |
|      *
 | |
|      * If situation is worse in the future (memory region isn't consecutive), we need to put these logics into chip-specific files
 | |
|      */
 | |
|     size_t total_mapped_size = 0;
 | |
|     size_t size_to_map = 0;
 | |
|     size_t byte_aligned_size = 0;
 | |
|     ret = esp_mmu_map_get_max_consecutive_free_block_size(MMU_MEM_CAP_READ | MMU_MEM_CAP_WRITE | MMU_MEM_CAP_8BIT | MMU_MEM_CAP_32BIT, MMU_TARGET_PSRAM0, &byte_aligned_size);
 | |
|     assert(ret == ESP_OK);
 | |
|     size_to_map = MIN(byte_aligned_size, psram_available_size);
 | |
| 
 | |
|     const void *v_start_8bit_aligned = NULL;
 | |
|     ret = esp_mmu_map_reserve_block_with_caps(size_to_map, MMU_MEM_CAP_READ | MMU_MEM_CAP_WRITE | MMU_MEM_CAP_8BIT | MMU_MEM_CAP_32BIT, MMU_TARGET_PSRAM0, &v_start_8bit_aligned);
 | |
|     assert(ret == ESP_OK);
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     s_mapping((int)v_start_8bit_aligned, size_to_map);
 | |
| #else
 | |
|     uint32_t actual_mapped_len = 0;
 | |
|     mmu_hal_map_region(0, MMU_TARGET_PSRAM0, (intptr_t)v_start_8bit_aligned, MMU_PAGE_TO_BYTES(start_page), size_to_map, &actual_mapped_len);
 | |
|     start_page += BYTES_TO_MMU_PAGE(actual_mapped_len);
 | |
|     ESP_EARLY_LOGV(TAG, "8bit-aligned-region: actual_mapped_len is 0x%x bytes", actual_mapped_len);
 | |
| 
 | |
|     cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, (uint32_t)v_start_8bit_aligned, actual_mapped_len);
 | |
|     cache_ll_l1_enable_bus(0, bus_mask);
 | |
| #if !CONFIG_FREERTOS_UNICORE
 | |
|     bus_mask = cache_ll_l1_get_bus(1, (uint32_t)v_start_8bit_aligned, actual_mapped_len);
 | |
|     cache_ll_l1_enable_bus(1, bus_mask);
 | |
| #endif
 | |
| #endif  //#if CONFIG_IDF_TARGET_ESP32
 | |
| 
 | |
|     s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].size = size_to_map;
 | |
|     s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].vaddr_start = (intptr_t)v_start_8bit_aligned;
 | |
|     s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].vaddr_end = (intptr_t)v_start_8bit_aligned + size_to_map;
 | |
|     s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].size = size_to_map;
 | |
|     s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].vaddr_start = (intptr_t)v_start_8bit_aligned;
 | |
|     s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].vaddr_end = (intptr_t)v_start_8bit_aligned + size_to_map;
 | |
|     ESP_EARLY_LOGV(TAG, "8bit-aligned-range: 0x%x B, starting from: 0x%x", s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].size, v_start_8bit_aligned);
 | |
|     total_mapped_size += size_to_map;
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32S2
 | |
|     /**
 | |
|      * On ESP32S2, there are 2 types of DBUS memory:
 | |
|      * - byte-aligned-memory
 | |
|      * - word-aligned-memory
 | |
|      *
 | |
|      * If byte-aligned-memory isn't enough, we search for word-aligned-memory to do mapping
 | |
|      */
 | |
|     if (total_mapped_size < psram_available_size) {
 | |
|         size_to_map = psram_available_size - total_mapped_size;
 | |
| 
 | |
|         size_t word_aligned_size = 0;
 | |
|         ret = esp_mmu_map_get_max_consecutive_free_block_size(MMU_MEM_CAP_READ | MMU_MEM_CAP_WRITE | MMU_MEM_CAP_32BIT, MMU_TARGET_PSRAM0,  &word_aligned_size);
 | |
|         assert(ret == ESP_OK);
 | |
|         size_to_map = MIN(word_aligned_size, size_to_map);
 | |
| 
 | |
|         const void *v_start_32bit_aligned = NULL;
 | |
|         ret = esp_mmu_map_reserve_block_with_caps(size_to_map, MMU_MEM_CAP_READ | MMU_MEM_CAP_WRITE | MMU_MEM_CAP_32BIT, MMU_TARGET_PSRAM0, &v_start_32bit_aligned);
 | |
|         assert(ret == ESP_OK);
 | |
| 
 | |
|         mmu_hal_map_region(0, MMU_TARGET_PSRAM0, (intptr_t)v_start_32bit_aligned, MMU_PAGE_TO_BYTES(start_page), size_to_map, &actual_mapped_len);
 | |
|         ESP_EARLY_LOGV(TAG, "32bit-aligned-region: actual_mapped_len is 0x%x bytes", actual_mapped_len);
 | |
| 
 | |
|         cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, (uint32_t)v_start_32bit_aligned, actual_mapped_len);
 | |
|         cache_ll_l1_enable_bus(0, bus_mask);
 | |
| 
 | |
|         s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].size = size_to_map;
 | |
|         s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].vaddr_start = (intptr_t)v_start_32bit_aligned;
 | |
|         s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].vaddr_end = (intptr_t)v_start_32bit_aligned + size_to_map;
 | |
|         s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].size = size_to_map;
 | |
|         s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].vaddr_start = (intptr_t)v_start_32bit_aligned;
 | |
|         s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].vaddr_end = (intptr_t)v_start_32bit_aligned + size_to_map;
 | |
|         ESP_EARLY_LOGV(TAG, "32bit-aligned-range: 0x%x B, starting from: 0x%x", s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].size, v_start_32bit_aligned);
 | |
|         total_mapped_size += size_to_map;
 | |
|     }
 | |
| #endif  //  #if CONFIG_IDF_TARGET_ESP32S2
 | |
| 
 | |
|     if (total_mapped_size < psram_available_size) {
 | |
|         ESP_EARLY_LOGW(TAG, "Virtual address not enough for PSRAM, map as much as we can. %dMB is mapped", total_mapped_size / 1024 / 1024);
 | |
|     }
 | |
| 
 | |
|     /*------------------------------------------------------------------------------
 | |
|     * After mapping, we DON'T care about the PSRAM PHYSICAL ADDRESSS ANYMORE!
 | |
|     *----------------------------------------------------------------------------*/
 | |
| 
 | |
|     //------------------------------------Configure .bss in PSRAM-------------------------------------//
 | |
| #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
 | |
|     //should never be negative number
 | |
|     uint32_t ext_bss_size = ((intptr_t)&_ext_ram_bss_end - (intptr_t)&_ext_ram_bss_start);
 | |
|     ESP_EARLY_LOGV(TAG, "ext_bss_size is %d", ext_bss_size);
 | |
|     s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].vaddr_start += ext_bss_size;
 | |
|     s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].size -= ext_bss_size;
 | |
| #endif  //#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
 | |
| 
 | |
| #if CONFIG_SPIRAM_ALLOW_NOINIT_SEG_EXTERNAL_MEMORY
 | |
|     uint32_t ext_noinit_size = ((intptr_t)&_ext_ram_noinit_end - (intptr_t)&_ext_ram_noinit_start);
 | |
|     ESP_EARLY_LOGV(TAG, "ext_noinit_size is %d", ext_noinit_size);
 | |
|     s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].vaddr_start += ext_noinit_size;
 | |
|     s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].size -= ext_noinit_size;
 | |
| #endif
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].size -= esp_himem_reserved_area_size() - 1;
 | |
|     s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].vaddr_end -= esp_himem_reserved_area_size();
 | |
| #endif
 | |
| 
 | |
|     //will be removed, TODO: IDF-6944
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     cache_driver_t drv = {
 | |
|         NULL,
 | |
|         esp_psram_extram_writeback_cache,
 | |
|     };
 | |
|     cache_register_writeback(&drv);
 | |
| #endif
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| esp_err_t esp_psram_extram_add_to_heap_allocator(void)
 | |
| {
 | |
|     esp_err_t ret = ESP_FAIL;
 | |
| 
 | |
|     uint32_t byte_aligned_caps[] = {MALLOC_CAP_SPIRAM|MALLOC_CAP_DEFAULT, 0, MALLOC_CAP_8BIT|MALLOC_CAP_32BIT};
 | |
|     ret = heap_caps_add_region_with_caps(byte_aligned_caps,
 | |
|                                          s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].vaddr_start,
 | |
|                                          s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].vaddr_end);
 | |
|     if (ret != ESP_OK) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     if (s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].size) {
 | |
|         assert(s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].vaddr_start);
 | |
|         uint32_t word_aligned_caps[] = {MALLOC_CAP_SPIRAM|MALLOC_CAP_DEFAULT, 0, MALLOC_CAP_32BIT};
 | |
|         ret = heap_caps_add_region_with_caps(word_aligned_caps,
 | |
|                                              s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].vaddr_start,
 | |
|                                              s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].vaddr_end);
 | |
|         if (ret != ESP_OK) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ESP_EARLY_LOGI(TAG, "Adding pool of %dK of PSRAM memory to heap allocator",
 | |
|                    (s_psram_ctx.regions_to_heap[PSRAM_MEM_8BIT_ALIGNED].size + s_psram_ctx.regions_to_heap[PSRAM_MEM_32BIT_ALIGNED].size) / 1024);
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool IRAM_ATTR esp_psram_check_ptr_addr(const void *p)
 | |
| {
 | |
|     if (!s_psram_ctx.is_initialised) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return ((intptr_t)p >= s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].vaddr_start && (intptr_t)p < s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].vaddr_end) ||
 | |
|            ((intptr_t)p >= s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].vaddr_start && (intptr_t)p < s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].vaddr_end);
 | |
| }
 | |
| 
 | |
| 
 | |
| esp_err_t esp_psram_extram_reserve_dma_pool(size_t size)
 | |
| {
 | |
|     if (size == 0) {
 | |
|         return ESP_OK; //no-op
 | |
|     }
 | |
| 
 | |
|     ESP_EARLY_LOGI(TAG, "Reserving pool of %dK of internal memory for DMA/internal allocations", size / 1024);
 | |
|     /* Pool may be allocated in multiple non-contiguous chunks, depending on available RAM */
 | |
|     while (size > 0) {
 | |
|         size_t next_size = heap_caps_get_largest_free_block(MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
 | |
|         next_size = MIN(next_size, size);
 | |
| 
 | |
|         ESP_EARLY_LOGD(TAG, "Allocating block of size %d bytes", next_size);
 | |
|         uint8_t *dma_heap = heap_caps_malloc(next_size, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
 | |
|         if (!dma_heap || next_size == 0) {
 | |
|             return ESP_ERR_NO_MEM;
 | |
|         }
 | |
| 
 | |
|         uint32_t caps[] = {0, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT | MALLOC_CAP_32BIT};
 | |
|         esp_err_t e = heap_caps_add_region_with_caps(caps, (intptr_t)dma_heap, (intptr_t)dma_heap + next_size - 1);
 | |
|         if (e != ESP_OK) {
 | |
|             return e;
 | |
|         }
 | |
|         size -= next_size;
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| bool IRAM_ATTR __attribute__((pure)) esp_psram_is_initialized(void)
 | |
| {
 | |
|     return s_psram_ctx.is_initialised;
 | |
| }
 | |
| 
 | |
| size_t esp_psram_get_size(void)
 | |
| {
 | |
|     uint32_t available_size = 0;
 | |
|     esp_err_t ret = esp_psram_impl_get_available_size(&available_size);
 | |
|     if (ret != ESP_OK) {
 | |
|         //This means PSRAM isn't initialised, to keep back-compatibility, set size to 0.
 | |
|         available_size = 0;
 | |
|     }
 | |
|     return (size_t)available_size;
 | |
| }
 | |
| 
 | |
| uint8_t esp_psram_io_get_cs_io(void)
 | |
| {
 | |
|     return esp_psram_impl_get_cs_io();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  Simple RAM test. Writes a word every 32 bytes. Takes about a second to complete for 4MiB. Returns
 | |
|  true when RAM seems OK, false when test fails. WARNING: Do not run this before the 2nd cpu has been
 | |
|  initialized (in a two-core system) or after the heap allocator has taken ownership of the memory.
 | |
| */
 | |
| static bool s_test_psram(intptr_t v_start, size_t size, intptr_t reserved_start, intptr_t reserved_end)
 | |
| {
 | |
|     volatile int *spiram = (volatile int *)v_start;
 | |
|     size_t p;
 | |
|     int errct = 0;
 | |
|     int initial_err = -1;
 | |
|     for (p = 0; p < (size / sizeof(int)); p += 8) {
 | |
|         intptr_t addr = (intptr_t)&spiram[p];
 | |
|         if ((reserved_start <= addr) && (addr < reserved_end)) {
 | |
|             continue;
 | |
|         }
 | |
|         spiram[p] = p ^ 0xAAAAAAAA;
 | |
|     }
 | |
|     for (p = 0; p < (size / sizeof(int)); p += 8) {
 | |
|         intptr_t addr = (intptr_t)&spiram[p];
 | |
|         if ((reserved_start <= addr) && (addr < reserved_end)) {
 | |
|             continue;
 | |
|         }
 | |
|         if (spiram[p] != (p ^ 0xAAAAAAAA)) {
 | |
|             errct++;
 | |
|             if (errct == 1) {
 | |
|                 initial_err = p * 4;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (errct) {
 | |
|         ESP_EARLY_LOGE(TAG, "SPI SRAM memory test fail. %d/%d writes failed, first @ %X\n", errct, size/32, initial_err + v_start);
 | |
|         return false;
 | |
|     } else {
 | |
|         ESP_EARLY_LOGI(TAG, "SPI SRAM memory test OK");
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| bool esp_psram_extram_test(void)
 | |
| {
 | |
|     bool test_success = false;
 | |
| #if CONFIG_SPIRAM_ALLOW_NOINIT_SEG_EXTERNAL_MEMORY
 | |
|     intptr_t noinit_vstart = (intptr_t)&_ext_ram_noinit_start;
 | |
|     intptr_t noinit_vend = (intptr_t)&_ext_ram_noinit_end;
 | |
| #else
 | |
|     intptr_t noinit_vstart = 0;
 | |
|     intptr_t noinit_vend = 0;
 | |
| #endif
 | |
|     test_success = s_test_psram(s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].vaddr_start,
 | |
|                                 s_psram_ctx.mapped_regions[PSRAM_MEM_8BIT_ALIGNED].size,
 | |
|                                 noinit_vstart,
 | |
|                                 noinit_vend);
 | |
|     if (!test_success) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].size) {
 | |
|         test_success = s_test_psram(s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].vaddr_start,
 | |
|                                     s_psram_ctx.mapped_regions[PSRAM_MEM_32BIT_ALIGNED].size,
 | |
|                                     0,
 | |
|                                     0);
 | |
|     }
 | |
|     if (!test_success) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 |