Files
esp-idf/components/esp_hw_support/dma/esp_dma_utils.c
2025-06-12 12:24:58 +08:00

146 lines
6.5 KiB
C

/*
* SPDX-FileCopyrightText: 2023-2025 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <sys/param.h>
#include <inttypes.h>
#include <string.h>
#include "sdkconfig.h"
#include "esp_check.h"
#include "esp_log.h"
#include "esp_heap_caps.h"
#include "esp_memory_utils.h"
#include "esp_dma_utils.h"
#include "esp_private/esp_dma_utils.h"
#include "esp_private/esp_cache_private.h"
#include "soc/soc_caps.h"
#include "hal/hal_utils.h"
#include "hal/cache_hal.h"
#include "hal/cache_ll.h"
#include "esp_cache.h"
static const char *TAG = "dma_utils";
#define ALIGN_UP_BY(num, align) (((num) + ((align) - 1)) & ~((align) - 1))
esp_err_t esp_dma_split_rx_buffer_to_cache_aligned(void *rx_buffer, size_t buffer_len, dma_buffer_split_array_t *align_buf_array, uint8_t** ret_stash_buffer)
{
esp_err_t ret = ESP_OK;
uint8_t* stash_buffer = NULL;
ESP_RETURN_ON_FALSE(rx_buffer && buffer_len && align_buf_array, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
// read the cache line size of internal and external memory, we also use this information to check if a given memory is behind the cache
size_t int_mem_cache_line_size = cache_hal_get_cache_line_size(CACHE_LL_LEVEL_INT_MEM, CACHE_TYPE_DATA);
size_t ext_mem_cache_line_size = cache_hal_get_cache_line_size(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_DATA);
size_t split_line_size = 0;
if (esp_ptr_external_ram(rx_buffer)) {
split_line_size = ext_mem_cache_line_size;
} else if (esp_ptr_internal(rx_buffer)) {
split_line_size = int_mem_cache_line_size;
}
ESP_LOGV(TAG, "split_line_size:%zu", split_line_size);
// allocate the stash buffer from internal RAM
// Note, the split_line_size can be 0, in this case, the stash_buffer is also NULL, which is fine
stash_buffer = heap_caps_calloc(2, split_line_size, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
ESP_RETURN_ON_FALSE(!(split_line_size && !stash_buffer), ESP_ERR_NO_MEM, TAG, "no mem for stash buffer");
// clear align_array to avoid garbage data
memset(align_buf_array, 0, sizeof(dma_buffer_split_array_t));
bool need_cache_sync[3] = {false};
// if split_line_size is non-zero, split the buffer into head, body and tail
if (split_line_size > 0) {
// calculate head_overflow_len
size_t head_overflow_len = (uintptr_t)rx_buffer % split_line_size;
head_overflow_len = head_overflow_len ? split_line_size - head_overflow_len : 0;
ESP_LOGV(TAG, "head_addr:%p head_overflow_len:%zu", rx_buffer, head_overflow_len);
// calculate tail_overflow_len
size_t tail_overflow_len = ((uintptr_t)rx_buffer + buffer_len) % split_line_size;
ESP_LOGV(TAG, "tail_addr:%p tail_overflow_len:%zu", rx_buffer + buffer_len - tail_overflow_len, tail_overflow_len);
uint8_t extra_buf_count = 0;
uint8_t* input_buffer = (uint8_t*)rx_buffer;
align_buf_array->buf.head.recovery_address = input_buffer;
align_buf_array->buf.head.aligned_buffer = stash_buffer + split_line_size * extra_buf_count++;
align_buf_array->buf.head.length = head_overflow_len;
need_cache_sync[0] = int_mem_cache_line_size > 0;
align_buf_array->buf.body.recovery_address = input_buffer + head_overflow_len;
align_buf_array->buf.body.aligned_buffer = input_buffer + head_overflow_len;
align_buf_array->buf.body.length = buffer_len - head_overflow_len - tail_overflow_len;
need_cache_sync[1] = true;
align_buf_array->buf.tail.recovery_address = input_buffer + buffer_len - tail_overflow_len;
align_buf_array->buf.tail.aligned_buffer = stash_buffer + split_line_size * extra_buf_count++;
align_buf_array->buf.tail.length = tail_overflow_len;
need_cache_sync[2] = int_mem_cache_line_size > 0;
// special handling when input_buffer length is no more than buffer alignment
if (head_overflow_len >= buffer_len || tail_overflow_len >= buffer_len) {
align_buf_array->buf.head.length = buffer_len ;
align_buf_array->buf.body.length = 0 ;
align_buf_array->buf.tail.length = 0 ;
}
} else {
align_buf_array->buf.body.aligned_buffer = rx_buffer;
align_buf_array->buf.body.recovery_address = rx_buffer;
align_buf_array->buf.body.length = buffer_len;
need_cache_sync[1] = false;
}
for (int i = 0; i < 3; i++) {
if (align_buf_array->aligned_buffer[i].length == 0) {
align_buf_array->aligned_buffer[i].aligned_buffer = NULL;
align_buf_array->aligned_buffer[i].recovery_address = NULL;
need_cache_sync[i] = false;
}
}
// invalidate the aligned buffer if necessary
for (int i = 0; i < 3; i++) {
if (need_cache_sync[i]) {
size_t sync_size = align_buf_array->aligned_buffer[i].length;
if (sync_size < split_line_size) {
// If the buffer is smaller than the cache line size, we need to sync the whole buffer
sync_size = split_line_size;
}
esp_err_t res = esp_cache_msync(align_buf_array->aligned_buffer[i].aligned_buffer, sync_size, ESP_CACHE_MSYNC_FLAG_DIR_M2C);
ESP_GOTO_ON_ERROR(res, err, TAG, "failed to do cache sync");
}
}
*ret_stash_buffer = stash_buffer;
return ESP_OK;
err:
if (stash_buffer) {
free(stash_buffer);
}
return ret;
}
esp_err_t esp_dma_merge_aligned_rx_buffers(dma_buffer_split_array_t *align_array)
{
ESP_RETURN_ON_FALSE_ISR(align_array, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
// only need to copy the head and tail buffer
if (align_array->buf.head.length) {
memcpy(align_array->buf.head.recovery_address, align_array->buf.head.aligned_buffer, align_array->buf.head.length);
}
if (align_array->buf.tail.length) {
memcpy(align_array->buf.tail.recovery_address, align_array->buf.tail.aligned_buffer, align_array->buf.tail.length);
}
return ESP_OK;
}
size_t esp_dma_calculate_node_count(size_t buffer_size, size_t buffer_alignment, size_t max_buffer_size_per_node)
{
// buffer_alignment should be power of 2
ESP_RETURN_ON_FALSE(buffer_alignment && ((buffer_alignment & (buffer_alignment - 1)) == 0), 0, TAG, "invalid buffer alignment");
// align down the max_buffer_size_per_node
max_buffer_size_per_node = max_buffer_size_per_node & ~(buffer_alignment - 1);
// calculate the number of nodes
return (buffer_size + max_buffer_size_per_node - 1) / max_buffer_size_per_node;
}