mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 13:09:38 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			209 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			209 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  */
 | |
| 
 | |
| #include <sys/param.h>
 | |
| #include "sdkconfig.h"
 | |
| #include "esp_log.h"
 | |
| #include "assert.h"
 | |
| #include "esp_efuse_utility.h"
 | |
| #include "soc/efuse_periph.h"
 | |
| #include "hal/efuse_hal.h"
 | |
| 
 | |
| static const char *TAG = "efuse";
 | |
| 
 | |
| #ifdef CONFIG_EFUSE_VIRTUAL
 | |
| extern uint32_t virt_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK];
 | |
| #endif // CONFIG_EFUSE_VIRTUAL
 | |
| 
 | |
| /*Range addresses to read blocks*/
 | |
| const esp_efuse_range_addr_t range_read_addr_blocks[] = {
 | |
|     {EFUSE_RD_WR_DIS_REG,       EFUSE_RD_REPEAT_DATA4_REG},      // range address of EFUSE_BLK0  REPEAT
 | |
|     {EFUSE_RD_MAC_SYS0_REG,     EFUSE_RD_MAC_SYS5_REG},      // range address of EFUSE_BLK1  MAC_SPI_8M
 | |
|     {EFUSE_RD_SYS_PART1_DATA0_REG,    EFUSE_RD_SYS_PART1_DATA7_REG},         // range address of EFUSE_BLK2  SYS_DATA
 | |
|     {EFUSE_RD_USR_DATA0_REG,    EFUSE_RD_USR_DATA7_REG},         // range address of EFUSE_BLK3  USR_DATA
 | |
|     {EFUSE_RD_KEY0_DATA0_REG,   EFUSE_RD_KEY0_DATA7_REG},        // range address of EFUSE_BLK4  KEY0
 | |
|     {EFUSE_RD_KEY1_DATA0_REG,   EFUSE_RD_KEY1_DATA7_REG},        // range address of EFUSE_BLK5  KEY1
 | |
|     {EFUSE_RD_KEY2_DATA0_REG,   EFUSE_RD_KEY2_DATA7_REG},        // range address of EFUSE_BLK6  KEY2
 | |
|     {EFUSE_RD_KEY3_DATA0_REG,   EFUSE_RD_KEY3_DATA7_REG},        // range address of EFUSE_BLK7  KEY3
 | |
|     {EFUSE_RD_KEY4_DATA0_REG,   EFUSE_RD_KEY4_DATA7_REG},        // range address of EFUSE_BLK8  KEY4
 | |
|     {EFUSE_RD_KEY5_DATA0_REG,   EFUSE_RD_KEY5_DATA7_REG},        // range address of EFUSE_BLK9  KEY5
 | |
|     {EFUSE_RD_SYS_PART2_DATA0_REG,   EFUSE_RD_SYS_PART2_DATA7_REG}         // range address of EFUSE_BLK10 KEY6
 | |
| };
 | |
| 
 | |
| static uint32_t write_mass_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK] = { 0 };
 | |
| 
 | |
| /*Range addresses to write blocks (it is not real regs, it is buffer) */
 | |
| const esp_efuse_range_addr_t range_write_addr_blocks[] = {
 | |
|     {(uint32_t) &write_mass_blocks[EFUSE_BLK0][0],  (uint32_t) &write_mass_blocks[EFUSE_BLK0][5]},
 | |
|     {(uint32_t) &write_mass_blocks[EFUSE_BLK1][0],  (uint32_t) &write_mass_blocks[EFUSE_BLK1][5]},
 | |
|     {(uint32_t) &write_mass_blocks[EFUSE_BLK2][0],  (uint32_t) &write_mass_blocks[EFUSE_BLK2][7]},
 | |
|     {(uint32_t) &write_mass_blocks[EFUSE_BLK3][0],  (uint32_t) &write_mass_blocks[EFUSE_BLK3][7]},
 | |
|     {(uint32_t) &write_mass_blocks[EFUSE_BLK4][0],  (uint32_t) &write_mass_blocks[EFUSE_BLK4][7]},
 | |
|     {(uint32_t) &write_mass_blocks[EFUSE_BLK5][0],  (uint32_t) &write_mass_blocks[EFUSE_BLK5][7]},
 | |
|     {(uint32_t) &write_mass_blocks[EFUSE_BLK6][0],  (uint32_t) &write_mass_blocks[EFUSE_BLK6][7]},
 | |
|     {(uint32_t) &write_mass_blocks[EFUSE_BLK7][0],  (uint32_t) &write_mass_blocks[EFUSE_BLK7][7]},
 | |
|     {(uint32_t) &write_mass_blocks[EFUSE_BLK8][0],  (uint32_t) &write_mass_blocks[EFUSE_BLK8][7]},
 | |
|     {(uint32_t) &write_mass_blocks[EFUSE_BLK9][0],  (uint32_t) &write_mass_blocks[EFUSE_BLK9][7]},
 | |
|     {(uint32_t) &write_mass_blocks[EFUSE_BLK10][0], (uint32_t) &write_mass_blocks[EFUSE_BLK10][7]},
 | |
| };
 | |
| 
 | |
| #ifndef CONFIG_EFUSE_VIRTUAL
 | |
| // Update Efuse timing configuration
 | |
| static esp_err_t esp_efuse_set_timing(void)
 | |
| {
 | |
|     // efuse clock is fixed.
 | |
|     // An argument (0) is for compatibility and will be ignored.
 | |
|     efuse_hal_set_timing(0);
 | |
|     return ESP_OK;
 | |
| }
 | |
| #endif // ifndef CONFIG_EFUSE_VIRTUAL
 | |
| 
 | |
| // Efuse read operation: copies data from physical efuses to efuse read registers.
 | |
| void esp_efuse_utility_clear_program_registers(void)
 | |
| {
 | |
|     efuse_hal_read();
 | |
|     efuse_hal_clear_program_registers();
 | |
| }
 | |
| 
 | |
| esp_err_t esp_efuse_utility_check_errors(void)
 | |
| {
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| // Burn values written to the efuse write registers
 | |
| esp_err_t esp_efuse_utility_burn_chip(void)
 | |
| {
 | |
|     return esp_efuse_utility_burn_chip_opt(false, true);
 | |
| }
 | |
| 
 | |
| esp_err_t esp_efuse_utility_burn_chip_opt(bool ignore_coding_errors, bool verify_written_data)
 | |
| {
 | |
|     esp_err_t error = ESP_OK;
 | |
| #ifdef CONFIG_EFUSE_VIRTUAL
 | |
|     (void) ignore_coding_errors;
 | |
|     (void) verify_written_data;
 | |
|     ESP_LOGW(TAG, "Virtual efuses enabled: Not really burning eFuses");
 | |
|     for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
 | |
|         int subblock = 0;
 | |
|         for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
 | |
|             virt_blocks[num_block][subblock++] |= REG_READ(addr_wr_block);
 | |
|         }
 | |
|     }
 | |
| #ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
 | |
|     esp_efuse_utility_write_efuses_to_flash();
 | |
| #endif
 | |
| #else // CONFIG_EFUSE_VIRTUAL
 | |
|     if (esp_efuse_set_timing() != ESP_OK) {
 | |
|         ESP_LOGE(TAG, "Efuse fields are not burnt");
 | |
|     } else {
 | |
|         // Permanently update values written to the efuse write registers
 | |
|         // It is necessary to process blocks in the order from MAX-> EFUSE_BLK0, because EFUSE_BLK0 has protection bits for other blocks.
 | |
|         for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
 | |
|             bool need_burn_block = false;
 | |
|             for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
 | |
|                 if (REG_READ(addr_wr_block) != 0) {
 | |
|                     need_burn_block = true;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             if (!need_burn_block) {
 | |
|                 continue;
 | |
|             }
 | |
|             if (error) {
 | |
|                 // It is done for a use case: BLOCK2 (Flash encryption key) could have an error (incorrect written data)
 | |
|                 // in this case we can not burn any data into BLOCK0 because it might set read/write protections of BLOCK2.
 | |
|                 ESP_LOGE(TAG, "BLOCK%d can not be burned because a previous block got an error, skipped.", num_block);
 | |
|                 continue;
 | |
|             }
 | |
|             efuse_hal_clear_program_registers();
 | |
|             if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
 | |
|                 uint8_t block_rs[12];
 | |
|                 efuse_hal_rs_calculate((void *)range_write_addr_blocks[num_block].start, block_rs);
 | |
|                 hal_memcpy((void *)EFUSE_PGM_CHECK_VALUE0_REG, block_rs, sizeof(block_rs));
 | |
|             }
 | |
|             unsigned r_data_len = (range_read_addr_blocks[num_block].end - range_read_addr_blocks[num_block].start) + sizeof(uint32_t);
 | |
|             unsigned data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
 | |
|             memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)range_write_addr_blocks[num_block].start, data_len);
 | |
| 
 | |
|             uint32_t backup_write_data[8 + 3]; // 8 words are data and 3 words are RS coding data
 | |
|             hal_memcpy(backup_write_data, (void *)EFUSE_PGM_DATA0_REG, sizeof(backup_write_data));
 | |
|             int repeat_burn_op = 1;
 | |
|             bool correct_written_data;
 | |
|             bool coding_error_before = !ignore_coding_errors && efuse_hal_is_coding_error_in_block(num_block);
 | |
|             if (coding_error_before) {
 | |
|                 ESP_LOGW(TAG, "BLOCK%d already has a coding error", num_block);
 | |
|             }
 | |
|             bool coding_error_occurred;
 | |
| 
 | |
|             do {
 | |
|                 ESP_LOGI(TAG, "BURN BLOCK%d", num_block);
 | |
|                 efuse_hal_program(num_block); // BURN a block
 | |
| 
 | |
|                 bool coding_error_after;
 | |
|                 for (unsigned i = 0; i < 5; i++) {
 | |
|                     efuse_hal_read();
 | |
|                     coding_error_after = efuse_hal_is_coding_error_in_block(num_block);
 | |
|                     if (coding_error_after == true) {
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 coding_error_occurred = !ignore_coding_errors && (coding_error_before != coding_error_after) && !coding_error_before;
 | |
|                 if (coding_error_occurred) {
 | |
|                     ESP_LOGW(TAG, "BLOCK%d got a coding error", num_block);
 | |
|                 }
 | |
| 
 | |
|                 correct_written_data = (verify_written_data) ? esp_efuse_utility_is_correct_written_data(num_block, r_data_len) : true;
 | |
|                 if (!correct_written_data || coding_error_occurred) {
 | |
|                     ESP_LOGW(TAG, "BLOCK%d: next retry to fix an error [%d/3]...", num_block, repeat_burn_op);
 | |
|                     hal_memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)backup_write_data, sizeof(backup_write_data));
 | |
|                 }
 | |
| 
 | |
|             } while ((!correct_written_data || coding_error_occurred) && repeat_burn_op++ < 3);
 | |
| 
 | |
|             if (coding_error_occurred) {
 | |
|                 ESP_LOGW(TAG, "Coding error was not fixed");
 | |
|                 if (num_block == 0) {
 | |
|                     ESP_LOGE(TAG, "BLOCK0 got a coding error, which might be critical for security");
 | |
|                     error = ESP_FAIL;
 | |
|                 }
 | |
|             }
 | |
|             if (!correct_written_data) {
 | |
|                 ESP_LOGE(TAG, "Written data are incorrect");
 | |
|                 error = ESP_FAIL;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #endif // CONFIG_EFUSE_VIRTUAL
 | |
|     esp_efuse_utility_reset();
 | |
|     return error;
 | |
| }
 | |
| 
 | |
| // After esp_efuse_write.. functions EFUSE_BLKx_WDATAx_REG were filled is not coded values.
 | |
| // This function reads EFUSE_BLKx_WDATAx_REG registers, and checks possible to write these data with RS coding scheme.
 | |
| // The RS coding scheme does not require data changes for the encoded data. esp32s2 has special registers for this.
 | |
| // They will be filled during the burn operation.
 | |
| esp_err_t esp_efuse_utility_apply_new_coding_scheme()
 | |
| {
 | |
|     // start with EFUSE_BLK1. EFUSE_BLK0 - always uses EFUSE_CODING_SCHEME_NONE.
 | |
|     for (int num_block = EFUSE_BLK1; num_block < EFUSE_BLK_MAX; num_block++) {
 | |
|         if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
 | |
|             for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
 | |
|                 if (REG_READ(addr_wr_block)) {
 | |
|                     int num_reg = 0;
 | |
|                     for (uint32_t addr_rd_block = range_read_addr_blocks[num_block].start; addr_rd_block <= range_read_addr_blocks[num_block].end; addr_rd_block += 4, ++num_reg) {
 | |
|                         if (esp_efuse_utility_read_reg(num_block, num_reg)) {
 | |
|                             ESP_LOGE(TAG, "Bits are not empty. Write operation is forbidden.");
 | |
|                             return ESP_ERR_CODING;
 | |
|                         }
 | |
|                     }
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | 
