Files
esp-idf/components/soc/esp32s3/include/soc/soc.h
Marius Vikhammer fe71a8e340 aes/sha: use a shared lazy allocated GDMA channel for AES and SHA
Removed the old dynamically allocated GDMA channel approach.
It proved too unreliable as we couldn't not ensure consumers of the mbedtls
would properly free the channels after use.

Replaced by a single shared GDMA channel for AES and SHA, which won't be
released unless user specifically calls API for releasing it.
2021-03-09 09:23:05 +08:00

341 lines
18 KiB
C

// Copyright 2010-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifndef __ASSEMBLER__
#include <stdint.h>
#include "esp_assert.h"
#include "esp_bit_defs.h"
#endif
#define PRO_CPU_NUM (0)
#define APP_CPU_NUM (1)
#define PRO_CPUID (0xcdcd)
#define APP_CPUID (0xabab)
#define SOC_MAX_CONTIGUOUS_RAM_SIZE (SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW) ///< Largest span of contiguous memory (DRAM or IRAM) in the address space
#define DR_REG_SYSTEM_BASE 0x600c0000
#define DR_REG_SENSITIVE_BASE 0x600c1000
#define DR_REG_INTERRUPT_BASE 0x600c2000
#define DR_REG_DMA_COPY_BASE 0x600c3000
#define DR_REG_EXTMEM_BASE 0x600c4000
#define DR_REG_MMU_TABLE 0x600c5000
#define DR_REG_ITAG_TABLE 0x600c6000
#define DR_REG_DTAG_TABLE 0x600c8000
#define DR_REG_AES_BASE 0x6003a000
#define DR_REG_SHA_BASE 0x6003b000
#define DR_REG_RSA_BASE 0x6003c000
#define DR_REG_HMAC_BASE 0x6003e000
#define DR_REG_DIGITAL_SIGNATURE_BASE 0x6003d000
#define DR_REG_GDMA_BASE 0x6003f000
#define DR_REG_CRYPTO_DMA_BASE 0x6003f000
#define DR_REG_ASSIST_DEBUG_BASE 0x600ce000
#define DR_REG_WORLD_CNTL_BASE 0x600d0000
#define DR_REG_DPORT_END 0x600d3FFC
#define DR_REG_UART_BASE 0x60000000
#define DR_REG_SPI1_BASE 0x60002000
#define DR_REG_SPI0_BASE 0x60003000
#define DR_REG_GPIO_BASE 0x60004000
#define DR_REG_GPIO_SD_BASE 0x60004f00
#define DR_REG_FE2_BASE 0x60005000
#define DR_REG_FE_BASE 0x60006000
#define DR_REG_FRC_TIMER_BASE 0x60007000
#define DR_REG_RTCCNTL_BASE 0x60008000
#define DR_REG_RTCIO_BASE 0x60008400
#define DR_REG_SENS_BASE 0x60008800
#define DR_REG_RTC_I2C_BASE 0x60008C00
#define DR_REG_IO_MUX_BASE 0x60009000
#define DR_REG_HINF_BASE 0x6000B000
#define DR_REG_UHCI1_BASE 0x6000C000
#define DR_REG_I2S_BASE 0x6000F000
#define DR_REG_UART1_BASE 0x60010000
#define DR_REG_BT_BASE 0x60011000
#define DR_REG_I2C_EXT_BASE 0x60013000
#define DR_REG_UHCI0_BASE 0x60014000
#define DR_REG_SLCHOST_BASE 0x60015000
#define DR_REG_RMT_BASE 0x60016000
#define DR_REG_PCNT_BASE 0x60017000
#define DR_REG_SLC_BASE 0x60018000
#define DR_REG_LEDC_BASE 0x60019000
#define DR_REG_EFUSE_BASE 0x6001A000
#define DR_REG_NRX_BASE 0x6001CC00
#define DR_REG_BB_BASE 0x6001D000
#define DR_REG_PWM0_BASE 0x6001E000
#define DR_REG_TIMERGROUP0_BASE 0x6001F000
#define DR_REG_TIMERGROUP1_BASE 0x60020000
#define DR_REG_RTC_SLOWMEM_BASE 0x60021000
#define DR_REG_SYS_TIMER_BASE 0x60023000
#define DR_REG_SPI2_BASE 0x60024000
#define DR_REG_SPI3_BASE 0x60025000
#define DR_REG_SYSCON_BASE 0x60026000
#define DR_REG_APB_CTRL_BASE 0x60026000 /* Old name for SYSCON, to be removed */
#define DR_REG_I2C1_EXT_BASE 0x60027000
#define DR_REG_SDMMC_BASE 0x60028000
#define DR_REG_TWAI_BASE 0x6002B000
#define DR_REG_PWM1_BASE 0x6002C000
#define DR_REG_I2S1_BASE 0x6002D000
#define DR_REG_UART2_BASE 0x6002E000
#define DR_REG_SPI4_BASE 0x60037000
#define DR_REG_USB_WRAP_BASE 0x60039000
#define DR_REG_APB_SARADC_BASE 0x60040000
#define DR_REG_LCD_CAM_BASE 0x60041000
#define REG_UHCI_BASE(i) (DR_REG_UHCI0_BASE - (i) * 0x8000)
#define REG_UART_BASE( i ) (DR_REG_UART_BASE + (i) * 0x10000 + ( (i) > 1 ? 0xe000 : 0 ) )
#define REG_UART_AHB_BASE(i) (0x60000000 + (i) * 0x10000 + ( (i) > 1 ? 0xe000 : 0 ) )
#define UART_FIFO_AHB_REG(i) (REG_UART_AHB_BASE(i) + 0x0)
#define REG_I2S_BASE( i ) (DR_REG_I2S_BASE + (i) * 0x1E000)
#define REG_TIMG_BASE(i) (DR_REG_TIMERGROUP0_BASE + (i)*0x1000)
#define REG_SPI_MEM_BASE(i) (DR_REG_SPI0_BASE - (i) * 0x1000)
#define REG_I2C_BASE(i) (DR_REG_I2C_EXT_BASE + (i) * 0x14000 )
//Registers Operation {{
#define ETS_UNCACHED_ADDR(addr) (addr)
#define ETS_CACHED_ADDR(addr) (addr)
#ifndef __ASSEMBLER__
//write value to register
#define REG_WRITE(_r, _v) ({ \
(*(volatile uint32_t *)(_r)) = (_v); \
})
//read value from register
#define REG_READ(_r) ({ \
(*(volatile uint32_t *)(_r)); \
})
//get bit or get bits from register
#define REG_GET_BIT(_r, _b) ({ \
(*(volatile uint32_t*)(_r) & (_b)); \
})
//set bit or set bits to register
#define REG_SET_BIT(_r, _b) ({ \
(*(volatile uint32_t*)(_r) |= (_b)); \
})
//clear bit or clear bits of register
#define REG_CLR_BIT(_r, _b) ({ \
(*(volatile uint32_t*)(_r) &= ~(_b)); \
})
//set bits of register controlled by mask
#define REG_SET_BITS(_r, _b, _m) ({ \
(*(volatile uint32_t*)(_r) = (*(volatile uint32_t*)(_r) & ~(_m)) | ((_b) & (_m))); \
})
//get field from register, uses field _S & _V to determine mask
#define REG_GET_FIELD(_r, _f) ({ \
((REG_READ(_r) >> (_f##_S)) & (_f##_V)); \
})
//set field of a register from variable, uses field _S & _V to determine mask
#define REG_SET_FIELD(_r, _f, _v) ({ \
(REG_WRITE((_r),((REG_READ(_r) & ~((_f##_V) << (_f##_S)))|(((_v) & (_f##_V))<<(_f##_S))))); \
})
//get field value from a variable, used when _f is not left shifted by _f##_S
#define VALUE_GET_FIELD(_r, _f) (((_r) >> (_f##_S)) & (_f))
//get field value from a variable, used when _f is left shifted by _f##_S
#define VALUE_GET_FIELD2(_r, _f) (((_r) & (_f))>> (_f##_S))
//set field value to a variable, used when _f is not left shifted by _f##_S
#define VALUE_SET_FIELD(_r, _f, _v) ((_r)=(((_r) & ~((_f) << (_f##_S)))|((_v)<<(_f##_S))))
//set field value to a variable, used when _f is left shifted by _f##_S
#define VALUE_SET_FIELD2(_r, _f, _v) ((_r)=(((_r) & ~(_f))|((_v)<<(_f##_S))))
//generate a value from a field value, used when _f is not left shifted by _f##_S
#define FIELD_TO_VALUE(_f, _v) (((_v)&(_f))<<_f##_S)
//generate a value from a field value, used when _f is left shifted by _f##_S
#define FIELD_TO_VALUE2(_f, _v) (((_v)<<_f##_S) & (_f))
//read value from register
#define READ_PERI_REG(addr) ({ \
(*((volatile uint32_t *)ETS_UNCACHED_ADDR(addr))); \
})
//write value to register
#define WRITE_PERI_REG(addr, val) ({ \
(*((volatile uint32_t *)ETS_UNCACHED_ADDR(addr))) = (uint32_t)(val); \
})
//clear bits of register controlled by mask
#define CLEAR_PERI_REG_MASK(reg, mask) ({ \
WRITE_PERI_REG((reg), (READ_PERI_REG(reg)&(~(mask)))); \
})
//set bits of register controlled by mask
#define SET_PERI_REG_MASK(reg, mask) ({ \
WRITE_PERI_REG((reg), (READ_PERI_REG(reg)|(mask))); \
})
//get bits of register controlled by mask
#define GET_PERI_REG_MASK(reg, mask) ({ \
(READ_PERI_REG(reg) & (mask)); \
})
//get bits of register controlled by highest bit and lowest bit
#define GET_PERI_REG_BITS(reg, hipos,lowpos) ({ \
((READ_PERI_REG(reg)>>(lowpos))&((1<<((hipos)-(lowpos)+1))-1)); \
})
//set bits of register controlled by mask and shift
#define SET_PERI_REG_BITS(reg,bit_map,value,shift) ({ \
(WRITE_PERI_REG((reg),(READ_PERI_REG(reg)&(~((bit_map)<<(shift))))|(((value) & bit_map)<<(shift)) )); \
})
//get field of register
#define GET_PERI_REG_BITS2(reg, mask,shift) ({ \
((READ_PERI_REG(reg)>>(shift))&(mask)); \
})
#endif /* !__ASSEMBLER__ */
//}}
//Periheral Clock {{
#define APB_CLK_FREQ_ROM (40*1000000)
#define CPU_CLK_FREQ_ROM (40*1000000)
#define UART_CLK_FREQ_ROM (40*1000000)
#define EFUSE_CLK_FREQ_ROM (20*1000000)
#define CPU_CLK_FREQ APB_CLK_FREQ
#define APB_CLK_FREQ (80*1000000)
#define REF_CLK_FREQ (1000000)
#define RTC_CLK_FREQ (20*1000000)
#define XTAL_CLK_FREQ (40*1000000)
#define UART_CLK_FREQ APB_CLK_FREQ
#define WDT_CLK_FREQ APB_CLK_FREQ
#define TIMER_CLK_FREQ (80000000>>4)
#define SPI_CLK_DIV 4
#define TICKS_PER_US_ROM 40
#define GPIO_MATRIX_DELAY_NS 0
//}}
/* Overall memory map */
#define SOC_DROM_LOW 0x3C000000
#define SOC_DROM_HIGH 0x3D000000
#define SOC_IROM_LOW 0x42000000
#define SOC_IROM_HIGH 0x42800000
#define SOC_IRAM_LOW 0x40370000
#define SOC_IRAM_HIGH 0x403E0000
#define SOC_DRAM_LOW 0x3FC88000
#define SOC_DRAM_HIGH 0x3FD00000
#define SOC_RTC_IRAM_LOW 0x600FE000
#define SOC_RTC_IRAM_HIGH 0x60100000
#define SOC_RTC_DRAM_LOW 0x600FE000
#define SOC_RTC_DRAM_HIGH 0x60100000
#define SOC_RTC_DATA_LOW 0x50000000
#define SOC_RTC_DATA_HIGH 0x50002000
#define SOC_EXTRAM_DATA_LOW 0x3D000000
#define SOC_EXTRAM_DATA_HIGH 0x3E000000
#define SOC_IROM_MASK_LOW 0x40000000
#define SOC_IROM_MASK_HIGH 0x4001A100
#define SOC_EXTRAM_DATA_SIZE (SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW)
//First and last words of the D/IRAM region, for both the DRAM address as well as the IRAM alias.
#define SOC_DIRAM_IRAM_LOW 0x40378000
#define SOC_DIRAM_IRAM_HIGH 0x403E0000
#define SOC_DIRAM_DRAM_LOW 0x3FC88000
#define SOC_DIRAM_DRAM_HIGH 0x3FCF0000
// Region of memory accessible via DMA in internal memory. See esp_ptr_dma_capable().
#define SOC_DMA_LOW 0x3FC88000
#define SOC_DMA_HIGH 0x3FD00000
// Region of memory accessible via DMA in external memory. See esp_ptr_dma_ext_capable().
#define SOC_DMA_EXT_LOW SOC_EXTRAM_DATA_LOW
#define SOC_DMA_EXT_HIGH SOC_EXTRAM_DATA_HIGH
// Region of memory that is byte-accessible. See esp_ptr_byte_accessible().
#define SOC_BYTE_ACCESSIBLE_LOW 0x3FC88000
#define SOC_BYTE_ACCESSIBLE_HIGH 0x3FD00000
//Region of memory that is internal, as in on the same silicon die as the ESP32 CPUs
//(excluding RTC data region, that's checked separately.) See esp_ptr_internal().
#define SOC_MEM_INTERNAL_LOW 0x3FC88000
#define SOC_MEM_INTERNAL_HIGH 0x403E2000
// Start (highest address) of ROM boot stack, only relevant during early boot
#define SOC_ROM_STACK_START 0x3fcebf10
//interrupt cpu using table, Please see the core-isa.h
/*************************************************************************************************************
* Intr num Level Type PRO CPU usage APP CPU uasge
* 0 1 extern level WMAC Reserved
* 1 1 extern level BT/BLE Host HCI DMA BT/BLE Host HCI DMA
* 2 1 extern level
* 3 1 extern level
* 4 1 extern level WBB
* 5 1 extern level BT/BLE Controller BT/BLE Controller
* 6 1 timer FreeRTOS Tick(L1) FreeRTOS Tick(L1)
* 7 1 software BT/BLE VHCI BT/BLE VHCI
* 8 1 extern level BT/BLE BB(RX/TX) BT/BLE BB(RX/TX)
* 9 1 extern level
* 10 1 extern edge
* 11 3 profiling
* 12 1 extern level
* 13 1 extern level
* 14 7 nmi Reserved Reserved
* 15 3 timer FreeRTOS Tick(L3) FreeRTOS Tick(L3)
* 16 5 timer
* 17 1 extern level
* 18 1 extern level
* 19 2 extern level
* 20 2 extern level
* 21 2 extern level
* 22 3 extern edge
* 23 3 extern level
* 24 4 extern level TG1_WDT
* 25 4 extern level CACHEERR
* 26 5 extern level
* 27 3 extern level Reserved Reserved
* 28 4 extern edge DPORT ACCESS DPORT ACCESS
* 29 3 software Reserved Reserved
* 30 4 extern edge Reserved Reserved
* 31 5 extern level
*************************************************************************************************************
*/
//CPU0 Interrupt number reserved, not touch this.
#define ETS_WMAC_INUM 0
#define ETS_BT_HOST_INUM 1
#define ETS_WBB_INUM 4
#define ETS_TG0_T1_INUM 10 /**< use edge interrupt*/
#define ETS_FRC1_INUM 22
#define ETS_T1_WDT_INUM 24
#define ETS_CACHEERR_INUM 25
#define ETS_DPORT_INUM 28
//CPU0 Interrupt number used in ROM, should be cancelled in SDK
#define ETS_SLC_INUM 1
#define ETS_UART0_INUM 5
#define ETS_UART1_INUM 5
#define ETS_SPI2_INUM 1
//CPU0 Interrupt number used in ROM code only when module init function called, should pay attention here.
#define ETS_FRC_TIMER2_INUM 10 /* use edge*/
#define ETS_GPIO_INUM 4
//Other interrupt number should be managed by the user
//Invalid interrupt for number interrupt matrix
#define ETS_INVALID_INUM 6