Files
ESP-Nodes/rc_code.md
2026-01-03 21:04:28 -05:00

1827 lines
56 KiB
Markdown

# ESP-IDF_Robot Project Layout
/main
app_main.c
system_init.c
system_init.h
scheduler.c
scheduler.h
/subsystems
/motors
motors.c
motors.h
/adc
adc.c
adc.h
joystick.c
joystick.h
/sensors
temp_sensor.c
temp_sensor.h
ina219_sensor.c
ina219_sensor.h
ultrasonic_sensor.c
ultrasonic_sensor.h
/connectivity
wifi_sys.c
wifi_sys.h
espnow_sys.c
espnow_sys.h
mqtt_sys.c
mqtt_sys.h
/ui
ui_led.c
ui_led.h
ui_buttons.c
ui_buttons.h
/include
config.h
controls.h
espnow_config.h
CMakeLists.txt
/main/CMakeLists.txt
/subsystems/CMakeLists.txt
### Top-level CMakeLists.txt
``` text
cmake_minimum_required(VERSION 3.16)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
set(EXTRA_COMPONENT_DIRS "subsystems")
project(robot_firmware)
```
### /main/CMakeLists.txt
``` cmake
idf_component_register(
SRCS "app_main.c" "system_init.c" "scheduler.c"
INCLUDE_DIRS "."
REQUIRES motors adc sensors connectivity ui
)
```
### /subsystems/CMakeLists.txt
``` text
# subsystems/motors/CMakeLists.txt
idf_component_register(
SRCS "motors.c"
INCLUDE_DIRS "."
REQUIRES driver
)
```
## CORE
### system_init.h
``` c
#pragma once
void system_init(void);
```
### system_init.c
``` c
#include "system_init.h"
#include "nvs_flash.h"
#include "esp_event.h"
#include "esp_netif.h"
#include "esp_log.h"
void system_init(void) {
esp_err_t ret = nvs_flash_init();
if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) {
ESP_ERROR_CHECK(nvs_flash_erase());
ret = nvs_flash_init();
}
ESP_ERROR_CHECK(ret);
ESP_ERROR_CHECK(esp_event_loop_create_default());
ESP_ERROR_CHECK(esp_netif_init());
}
```
### scheduler.h
``` c
#pragma once
#include "freertos/FreeRTOS.h"
typedef struct motor_system_t motor_system_t;
typedef struct adc_system_t adc_system_t;
typedef struct mqtt_system_t mqtt_system_t;
typedef struct temp_sensor_system_t temp_sensor_system_t;
typedef struct ina219_system_t ina219_system_t;
typedef struct ultrasonic_system_t ultrasonic_system_t;
typedef struct scheduler_t {
motor_system_t *motors;
adc_system_t *adc;
mqtt_system_t *mqtt;
temp_sensor_system_t *temp;
ina219_system_t *ina;
ultrasonic_system_t *ultra;
} scheduler_t;
void scheduler_init(scheduler_t *sched);
void scheduler_start(scheduler_t *sched);
```
### scheduler.c
``` c
#include "scheduler.h"
#include "freertos/task.h"
static void scheduler_task(void *arg) {
scheduler_t *sched = (scheduler_t *)arg;
TickType_t last = xTaskGetTickCount();
while (1) {
TickType_t now = xTaskGetTickCount();
if (sched->adc && sched->adc->update) sched->adc->update(sched->adc, now);
if (sched->motors && sched->motors->update) sched->motors->update(sched->motors, now);
if (sched->mqtt && sched->mqtt->update) sched->mqtt->update(sched->mqtt, now);
if (sched->temp && sched->temp->update) sched->temp->update(sched->temp, now);
if (sched->ina && sched->ina->update) sched->ina->update(sched->ina, now);
if (sched->ultra && sched->ultra->update) sched->ultra->update(sched->ultra, now);
vTaskDelayUntil(&last, pdMS_TO_TICKS(10)); // 100 Hz
}
}
void scheduler_init(scheduler_t *sched) {
(void)sched;
}
void scheduler_start(scheduler_t *sched) {
xTaskCreate(scheduler_task, "scheduler", 4096, sched, 5, NULL);
}
```
### app_main.c
``` c
#include "system_init.h"
#include "scheduler.h"
#include "motors.h"
#include "adc.h"
#include "temp_sensor.h"
#include "ina219_sensor.h"
#include "ultrasonic_sensor.h"
#include "wifi_sys.h"
#include "espnow_sys.h"
#include "mqtt_sys.h"
#include "ui_led.h"
#include "ui_buttons.h"
void app_main(void) {
system_init();
static motor_system_t motors;
static adc_system_t adc;
static temp_sensor_system_t temp;
static ina219_system_t ina;
static ultrasonic_system_t ultra;
static mqtt_system_t mqtt;
static scheduler_t sched;
motor_system_init(&motors);
adc_system_init(&adc);
temp_sensor_system_init(&temp);
ina219_system_init(&ina);
ultrasonic_system_init(&ultra);
wifi_system_init(); // no struct needed
espnow_system_init(&adc, &motors); // pass references if needed
mqtt_system_init(&mqtt);
ui_led_init();
ui_buttons_init();
sched.motors = &motors;
sched.adc = &adc;
sched.temp = &temp;
sched.ina = &ina;
sched.ultra = &ultra;
sched.mqtt = &mqtt;
scheduler_init(&sched);
scheduler_start(&sched);
}
```
## Motors Subsystem
### motors.h
``` c
#pragma once
#include "freertos/FreeRTOS.h"
#include "driver/ledc.h"
typedef struct motor_system_t motor_system_t;
struct motor_system_t {
int pwm_left;
int pwm_right;
void (*set)(motor_system_t *self, int left, int right);
void (*stop)(motor_system_t *self);
void (*update)(motor_system_t *self, TickType_t now);
};
void motor_system_init(motor_system_t *sys);
```
### motors.c
``` c
#include "motors.h"
#include "config.h"
#include "esp_log.h"
static const char *TAG = "MOTORS";
static void motor_hw_init(void) {
// LEDC timers + channels using your config.h constants
// (MTR_FREQUENCY, MTR_MODE, MTR_DUTY_RES, etc.)
}
static void motor_apply_pwm(motor_system_t *self) {
// Map self->pwm_left / pwm_right to LEDC duty
// Use ledc_set_duty + ledc_update_duty
}
static void motor_set_impl(motor_system_t *self, int left, int right) {
self->pwm_left = left;
self->pwm_right = right;
motor_apply_pwm(self);
}
static void motor_stop_impl(motor_system_t *self) {
motor_set_impl(self, 0, 0);
}
static void motor_update_impl(motor_system_t *self, TickType_t now) {
(void)now;
// Optional: ramping, safety, timeouts
}
void motor_system_init(motor_system_t *sys) {
motor_hw_init();
sys->pwm_left = 0;
sys->pwm_right = 0;
sys->set = motor_set_impl;
sys->stop = motor_stop_impl;
sys->update = motor_update_impl;
}
```
### adc.h
``` c
#pragma once
#include "freertos/FreeRTOS.h"
typedef struct adc_system_t adc_system_t;
struct adc_system_t {
int x_raw;
int y_raw;
void (*read)(adc_system_t *self);
void (*update)(adc_system_t *self, TickType_t now);
};
void adc_system_init(adc_system_t *sys);
```
### acd.c
``` c
#include "adc.h"
#include "driver/adc.h"
#include "esp_adc/adc_oneshot.h"
#include "esp_log.h"
static const char *TAG = "ADC";
static adc_oneshot_unit_handle_t adc1_handle;
static void adc_hw_init(void) {
adc_oneshot_unit_init_cfg_t init_config = {
.unit_id = ADC_UNIT_1,
};
ESP_ERROR_CHECK(adc_oneshot_new_unit(&init_config, &adc1_handle));
adc_oneshot_chan_cfg_t cfg = {
.bitwidth = SOC_ADC_DIGI_MAX_BITWIDTH,
.atten = ADC_ATTEN_DB_11,
};
ESP_ERROR_CHECK(adc_oneshot_config_channel(adc1_handle, ADC_CHANNEL_0, &cfg));
ESP_ERROR_CHECK(adc_oneshot_config_channel(adc1_handle, ADC_CHANNEL_1, &cfg));
}
static void adc_read_impl(adc_system_t *self) {
int x = 0, y = 0;
ESP_ERROR_CHECK(adc_oneshot_read(adc1_handle, ADC_CHANNEL_0, &x));
ESP_ERROR_CHECK(adc_oneshot_read(adc1_handle, ADC_CHANNEL_1, &y));
self->x_raw = x;
self->y_raw = y;
}
static void adc_update_impl(adc_system_t *self, TickType_t now) {
(void)now;
adc_read_impl(self);
}
void adc_system_init(adc_system_t *sys) {
adc_hw_init();
sys->x_raw = 0;
sys->y_raw = 0;
sys->read = adc_read_impl;
sys->update = adc_update_impl;
}
```
### joystick.h
``` c
#pragma once
void joystick_mix(int x_raw, int y_raw, int *pwm_left, int *pwm_right);
```
### joystick.c
``` c
#include "joystick.h"
#include <math.h>
static float clampf(float v, float min, float max) {
return v < min ? min : (v > max ? max : v);
}
void joystick_mix(int X_raw, int Y_raw, int *pwm_a, int *pwm_b) {
float x = (float)(X_raw - 1020) / 1020.0f;
float y = (float)(Y_raw - 1020) / 1020.0f;
const float k = 0.4f;
float L0 = y + k * x;
float R0 = y - k * x;
float m = fmaxf(1.0f, fmaxf(fabsf(L0), fabsf(R0)));
float L = L0 / m;
float R = R0 / m;
float L_scaled = L * 8190.0f;
float R_scaled = R * 8190.0f;
*pwm_a = (int)clampf(L_scaled, -8191.0f, 8190.0f);
*pwm_b = (int)clampf(R_scaled, -8191.0f, 8190.0f);
}
```
### wifi_sys.h
``` c
#pragma once
void wifi_system_init(void);
```
### wifi_sys.c
``` c
#include "wifi_sys.h"
#include "esp_wifi.h"
#include "esp_netif.h"
#include "esp_log.h"
#include "mqtt_sys.h" // for SSID/PASS if you keep them there or in config.h
static const char *TAG = "WIFI_SYS";
void wifi_system_init(void) {
esp_netif_create_default_wifi_sta();
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
wifi_config_t wifi_config = {
.sta = {
.ssid = WIFI_SSID,
.password = WIFI_PASSWORD,
},
};
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
ESP_ERROR_CHECK(esp_wifi_set_config(WIFI_IF_STA, &wifi_config));
ESP_ERROR_CHECK(esp_wifi_start());
ESP_ERROR_CHECK(esp_wifi_connect());
}
```
### espnow_sys.h
``` c
#pragma once
#include <stdint.h>
typedef struct adc_system_t adc_system_t;
typedef struct motor_system_t motor_system_t;
void espnow_system_init(adc_system_t *adc, motor_system_t *motors);
```
### espnow_sys.c
``` c
#include "espnow_sys.h"
#include "esp_now.h"
#include "esp_wifi.h"
#include "esp_log.h"
#include "controls.h" // for sensors_data_t, etc.
static const char *TAG = "ESPNOW_SYS";
static adc_system_t *s_adc = NULL;
static motor_system_t *s_motors = NULL;
static void espnow_recv_cb(const uint8_t *mac_addr, const uint8_t *data, int len) {
if (len < sizeof(sensors_data_t)) return;
sensors_data_t buf;
memcpy(&buf, data, sizeof(buf));
if (s_adc) {
s_adc->x_raw = buf.x_axis;
s_adc->y_raw = buf.y_axis;
}
if (s_motors && s_motors->set) {
// if you still want direct PWM from RC:
s_motors->set(s_motors, buf.motor1_rpm_pcm, buf.motor2_rpm_pcm);
}
}
void espnow_system_init(adc_system_t *adc, motor_system_t *motors) {
s_adc = adc;
s_motors = motors;
ESP_ERROR_CHECK(esp_now_init());
ESP_ERROR_CHECK(esp_now_register_recv_cb(espnow_recv_cb));
// add peer config here if needed
}
```
### mqtt_sys.h
``` c
#pragma once
#include "freertos/FreeRTOS.h"
typedef struct mqtt_system_t mqtt_system_t;
struct mqtt_system_t {
float temp;
float battery_voltage;
float sys_current;
float sys_power;
int pwm_1;
int pwm_2;
void (*publish_temp)(mqtt_system_t *self, float temp);
void (*publish_pwm)(mqtt_system_t *self, int pwm1, int pwm2);
void (*update)(mqtt_system_t *self, TickType_t now);
};
void mqtt_system_init(mqtt_system_t *sys);
#define WIFI_SSID "IoT_bots"
#define WIFI_PASSWORD "208208208"
```
### mqtt_sys.c
``` c
#include "mqtt_sys.h"
#include "mqtt_client.h"
#include "esp_log.h"
static const char *TAG = "MQTT_SYS";
static const char *MQTT_BROKER_URI = "mqtt://74.14.210.168";
static esp_mqtt_client_handle_t s_client = NULL;
static void mqtt_publish_temp_impl(mqtt_system_t *self, float temp) {
self->temp = temp;
if (!s_client) return;
char buf[16];
snprintf(buf, sizeof(buf), "%.02f", temp);
esp_mqtt_client_publish(s_client, "/bitrider/temp", buf, 0, 1, 0);
}
static void mqtt_publish_pwm_impl(mqtt_system_t *self, int pwm1, int pwm2) {
self->pwm_1 = pwm1;
self->pwm_2 = pwm2;
if (!s_client) return;
char b1[8], b2[8];
snprintf(b1, sizeof(b1), "%d", pwm1);
snprintf(b2, sizeof(b2), "%d", pwm2);
esp_mqtt_client_publish(s_client, "/bitrider/pwm-1", b1, 0, 1, 0);
esp_mqtt_client_publish(s_client, "/bitrider/pwm-2", b2, 0, 1, 0);
}
static void mqtt_event_handler(void *handler_args, esp_event_base_t base, int32_t event_id, void *event_data) {
esp_mqtt_event_handle_t event = event_data;
switch (event->event_id) {
case MQTT_EVENT_CONNECTED:
ESP_LOGI(TAG, "MQTT connected");
s_client = event->client;
break;
case MQTT_EVENT_DISCONNECTED:
ESP_LOGI(TAG, "MQTT disconnected");
s_client = NULL;
break;
default:
break;
}
}
static void mqtt_update_impl(mqtt_system_t *self, TickType_t now) {
(void)self;
(void)now;
// could periodically republish or handle queued data
}
void mqtt_system_init(mqtt_system_t *sys) {
sys->temp = 0.0f;
sys->battery_voltage = 0.0f;
sys->sys_current = 0.0f;
sys->sys_power = 0.0f;
sys->pwm_1 = 0;
sys->pwm_2 = 0;
sys->publish_temp = mqtt_publish_temp_impl;
sys->publish_pwm = mqtt_publish_pwm_impl;
sys->update = mqtt_update_impl;
esp_mqtt_client_config_t cfg = {
.broker.address.uri = MQTT_BROKER_URI,
};
esp_mqtt_client_handle_t client = esp_mqtt_client_init(&cfg);
esp_mqtt_client_register_event(client, ESP_EVENT_ANY_ID, mqtt_event_handler, NULL);
esp_mqtt_client_start(client);
}
```
### temp_sensor.h
``` c
#pragma once
#include "freertos/FreeRTOS.h"
typedef struct temp_sensor_system_t temp_sensor_system_t;
struct temp_sensor_system_t {
float last_celsius;
// API
void (*update)(temp_sensor_system_t *self, TickType_t now);
};
void temp_sensor_system_init(temp_sensor_system_t *sys);
```
### temp_sensor.c
``` c
#include "temp_sensor.h"
#include "driver/temperature_sensor.h"
#include "esp_log.h"
static const char *TAG = "TEMP_SENSOR";
static temperature_sensor_handle_t s_temp_handle = NULL;
static void temp_hw_init(void) {
temperature_sensor_config_t cfg = TEMPERATURE_SENSOR_CONFIG_DEFAULT(10, 50);
ESP_ERROR_CHECK(temperature_sensor_install(&cfg, &s_temp_handle));
ESP_ERROR_CHECK(temperature_sensor_enable(s_temp_handle));
ESP_LOGI(TAG, "Temperature sensor initialized");
}
static void temp_update_impl(temp_sensor_system_t *self, TickType_t now) {
(void)now;
if (!s_temp_handle) return;
float c = 0.0f;
esp_err_t err = temperature_sensor_get_celsius(s_temp_handle, &c);
if (err == ESP_OK) {
self->last_celsius = c;
ESP_LOGD(TAG, "Temperature: %.02f C", c);
} else {
ESP_LOGW(TAG, "Failed to read temperature sensor: %s", esp_err_to_name(err));
}
}
void temp_sensor_system_init(temp_sensor_system_t *sys) {
temp_hw_init();
sys->last_celsius = 0.0f;
sys->update = temp_update_impl;
}
```
## blink_example_main.c
/* Robot Controls
Generate PWM signals to control motors.
By: Alexander Bobkov
Date: Dec 21, 2024
Updated: Jan 10, 2025
Jun 26, 2025
Jul 26, 2025 (ESP-IDF + MQTT + WiFi)
Aug 6 , 2025 Continous interpolation of joystick x- and y- values
Jan 3, 2026 Revised motor control logic
built-in LED GPIO: 10
build-in push button GPIO: 3
ESP-PDF: v5.4.1
SPECS
Voltage, DevBoard: 5V
Voltage, Robot: 7.4V (2S LiPo battery)
Current, standby: 300mA
Current, motors: 850mA
*/
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
#include <math.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "driver/gpio.h"
#include "driver/ledc.h"
#include "driver/temperature_sensor.h"
//#include "driver/mcpwm.h"
#include "esp_log.h"
#include "led_strip.h"
#include "sdkconfig.h"
/* ADC */
#include "rc.h"
/* Motors Controls */
#include "motor_controls.h"
/* System-wide controls */
#include "controls.h"
#include "esp_adc/adc_continuous.h"
/* ESP-NOW */
#include <string.h>
#include <assert.h>
#include "freertos/semphr.h"
#include "freertos/timers.h"
#include "nvs_flash.h"
#include "esp_random.h"
#include "esp_event.h"
#include "esp_log.h"
#include "esp_crc.h"
#include "esp_netif.h"
#include "esp_now.h"
#include "esp_mac.h"
#include "esp_wifi.h"
#include "mqtt.h"
#include "esp_system.h"
#include "espnow_config.h"
#include "ultrasonic.h"
#include "ina219.h"
#include "config.h"
static const char *TAG = "ESP IDF Robot";
#define I2C_PORT 0
#define I2C_ADDR 0x40
#define CONFIG_EXAMPLE_I2C_MASTER_SDA 3
#define CONFIG_EXAMPLE_I2C_MASTER_SCL 2
#define CONFIG_EXAMPLE_SHUNT_RESISTOR_MILLI_OHM 100
/* Use project configuration menu (idf.py menuconfig) to choose the GPIO to blink,
or you can edit the following line and set a number here.
*/
// Retrieve values from configuration menu
#define BLINK_GPIO CONFIG_BLINK_GPIO // 10 GPIO of on-board LED
#define PUSH_BTN_GPIO CONFIG_BUTTON_GPIO // 8, not 3 GPIO of on-board push-button
#define MTR_FL_GPIO 0 //CONFIG_MOTOR_FRONT_LEFT_GPIO
// ADC
#define ADC_ATTEN ADC_ATTEN_DB_11
#define ADC_BIT_WIDTH SOC_ADC_DIGI_MAX_BITWIDTH
#define ADC_UNIT ADC_UNIT_1
#define ADC_CONV_MODE ADC_CONV_BOTH_UNIT// ADC_CONV_SINGLE_UNIT_1
#define ADC_OUTPUT_TYPE ADC_DIGI_OUTPUT_FORMAT_TYPE2 // ESP32C3
#define READ_LEN 1024//256
//#define ADC_GET_CHANNEL(p_data) ((p_data)->type2.channel)
//#define ADC_GET_DATA(p_data) ((p_data)->type2.data)
#define PROJ_X (1) // ADC1_CH1; 0 GPIO joystick, x-axis
#define PROJ_Y (0) // ADC1_CH0; 1 GPIO joystick, y-axis
#define NAV_BTN (8) // 8 GPIO joystick button
#define _ADC_UNIT_STR(unit) #unit
#define ADC_UNIT_STR(unit) _ADC_UNIT_STR(unit)
uint32_t x_avg = 0, y_avg = 0;
static TaskHandle_t led_task_handle;
static TaskHandle_t s_task_handle;
static TaskHandle_t m_task_handle; // Task for controlling motors PWMs
static adc_channel_t channel[2] = {ADC_CHANNEL_0, ADC_CHANNEL_1};
static sensors_data_t buf;
#define ESP_INTR_FLAG_DEFAULT 0
#define GPIO_INPUT_PIN_SEL ((1ULL<<PUSH_BTN_GPIO) | (1ULL<<NAV_BTN))
#define GPIO_OUTPUT_PIN_SEL ((1ULL<<BLINK_GPIO))
/* ESPNOW can work in both station and softap mode. It is configured in menuconfig. */
#if CONFIG_ESPNOW_WIFI_MODE_STATION
#define ESPNOW_WIFI_MODE WIFI_MODE_STA
#define ESPNOW_WIFI_IF ESP_IF_WIFI_STA
#else
#define ESPNOW_WIFI_MODE WIFI_MODE_AP
#define ESPNOW_WIFI_IF ESP_IF_WIFI_AP
#endif
static temperature_sensor_handle_t temp_sensor;
static temperature_sensor_config_t temp_sensor_config;
float tsens_value;
static QueueHandle_t gpio_evt_queue = NULL;
static uint8_t s_led_state = 1;
/* ============================
ESP NOW
============================
ESP32-C3 Blue board MAC: 54:32:04:46:71:80
ESP32-C3 SuperMini MAC: 34:b7:da:f9:33:8d
ESP32-C3 Breadboard #1 MAC: e4:b0:63:17:9e:45
ESP32-C3 Breadboard #2 MAC: 9c:9e:6e:14:b5:54 (rapid blink)
ESP32-C3 zenBoard MAC: dc:da:0c:8e:b3:70
*/
static uint8_t broadcast_mac[ESP_NOW_ETH_ALEN] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
//static uint8_t broadcast_mac[ESP_NOW_ETH_ALEN] = {0x54, 0x32, 0x04, 0x46, 0x71, 0x80}; // MAC address of troubleshooting Dev board
//static uint8_t broadcast_mac[ESP_NOW_ETH_ALEN] = {0xE4, 0xB0, 0x63, 0x17, 0x9E, 0x45};
static uint8_t robot_mac[ESP_NOW_ETH_ALEN] = {0xE4, 0xB0, 0x63, 0x17, 0x9E, 0x45}; // MAC address of Robot
static uint8_t rc_mac[ESP_NOW_ETH_ALEN] = {0x34, 0xB7, 0xDA, 0xF9, 0x33, 0x8D}; // MAC address of Remote Control
static uint8_t espnow_seq[ESPNOW_DATA_MAX] = {0, 0};
static int rc_x = 0, rc_y = 0;
static int pwm_motor_1 = 0;
static int pwm_motor_2 = 0;
static int pwm_motor_3 = 0;
static int pwm_motor_4 = 0;
//uint8_t broadcastAddress[] = {};
//struct_message controlData;
esp_now_peer_info_t peerInfo;
static void espnow_deinit(espnow_send_param_t *send_param);
static void blink_led(void) {
/* Set the GPIO level according to the state (LOW or HIGH)*/
gpio_set_level(BLINK_GPIO, s_led_state);
}
static void IRAM_ATTR gpio_isr_handler (void* arg) {
uint32_t gpio_num = (uint32_t) arg;
xQueueSendFromISR(gpio_evt_queue, &gpio_num, NULL);
}
// Push button interrupt task
static void gpio_task (void* arg) {
uint32_t io_num;
for (;;) {
if (xQueueReceive(gpio_evt_queue, &io_num, portMAX_DELAY)) {
printf("GPIO[%"PRIu32"] intr, val: %d\n", io_num, gpio_get_level(io_num));
}
}
}
static void nav_key_task (void* arg) {
uint32_t io_num;
for (;;) {
if (xQueueReceive(gpio_evt_queue, &io_num, portMAX_DELAY)) {
//printf("GPIO[%"PRIu32"] intr, val: %d\n", io_num, gpio_get_level(io_num));
}
}
}
static void configure_button (void) {
ESP_LOGI(TAG, "Configured on-board push button");
//gpio_reset_pin(PUSH_BTN_GPIO);
//gpio_set_direction(PUSH_BTN_GPIO, GPIO_MODE_INPUT);
}
// Struct for storing DC Motors PWM values
static void motors_init (void) {
m.motor1_rpm_pcm = 0;
m.motor2_rpm_pcm = 0;
m.motor3_rpm_pcm = 0;
m.motor4_rpm_pcm = 0;
}
// Initialize DC Motors PWM timers and channels
static void ledc_init (void) {
// MOTOR FRONT RIGHT, FORWARD
ledc_timer_config_t ledc_timer_1 = {
.speed_mode = MTR_MODE,// LEDC_MODE,
.duty_resolution = MTR_DUTY_RES,// LEDC_DUTY_RES,
.timer_num = MTR_FRONT_RIGHT_TMR,// LEDC_TIMER,
.freq_hz = MTR_FREQUENCY,// LEDC_FREQUENCY,
.clk_cfg = LEDC_APB_CLK
};
ESP_ERROR_CHECK(ledc_timer_config(&ledc_timer_1));
ledc_channel_config_t ledc_channel_1 = {
.speed_mode = MTR_MODE,
.channel = MTR_FRONT_RIGHT,// LEDC_CHANNEL_0,// MTR_FRONT_RIGHT,
.timer_sel = MTR_FRONT_RIGHT_TMR,// LEDC_TIMER,
.intr_type = LEDC_INTR_DISABLE,
.gpio_num = MTR_FRONT_RIGHT_IO,
.duty = MTR_FRONT_RIGHT_DUTY,
.hpoint = 0,
};
ESP_ERROR_CHECK(ledc_channel_config(&ledc_channel_1));
// MOTOR FRONT LEFT, FORWARD
ledc_timer_config_t ledc_timer_2 = {
.speed_mode = MTR_MODE,
.duty_resolution = MTR_DUTY_RES,
.timer_num = MTR_FRONT_LEFT_TMR,
.freq_hz = MTR_FREQUENCY,
.clk_cfg = LEDC_APB_CLK
};
ESP_ERROR_CHECK(ledc_timer_config(&ledc_timer_2));
ledc_channel_config_t ledc_channel_2 = {
.speed_mode = MTR_MODE,
.channel = MTR_FRONT_LEFT,
.timer_sel = MTR_FRONT_LEFT_TMR,
.intr_type = LEDC_INTR_DISABLE,
.gpio_num = MTR_FRONT_LEFT_IO,
.duty = MTR_FRONT_LEFT_DUTY,
.hpoint = 0,
};
ESP_ERROR_CHECK(ledc_channel_config(&ledc_channel_2));
// MOTOR FRONT RIGHT, REVERSE
ledc_timer_config_t ledc_timer_3 = {
.speed_mode = MTR_MODE,// LEDC_MODE,
.duty_resolution = MTR_DUTY_RES,// LEDC_DUTY_RES,
.timer_num = MTR_FRONT_RIGHT_REV_TMR,// LEDC_TIMER,
.freq_hz = MTR_FREQUENCY,// LEDC_FREQUENCY,
.clk_cfg = LEDC_APB_CLK
};
ESP_ERROR_CHECK(ledc_timer_config(&ledc_timer_3));
ledc_channel_config_t ledc_channel_3 = {
.speed_mode = MTR_MODE,
.channel = MTR_FRONT_RIGHT_REV,// LEDC_CHANNEL_0,// MTR_FRONT_RIGHT,
.timer_sel = MTR_FRONT_RIGHT_REV_TMR,// LEDC_TIMER,
.intr_type = LEDC_INTR_DISABLE,
.gpio_num = MTR_FRONT_RIGHT_REV_IO,
.duty = MTR_FRONT_RIGHT_REV_DUTY,
.hpoint = 0,
};
ESP_ERROR_CHECK(ledc_channel_config(&ledc_channel_3));
// MOTOR FRONT LEFT, REVERSE
ledc_timer_config_t ledc_timer_4 = {
.speed_mode = MTR_MODE,
.duty_resolution = MTR_DUTY_RES,
.timer_num = MTR_FRONT_LEFT_REV_TMR,
.freq_hz = MTR_FREQUENCY,
.clk_cfg = LEDC_APB_CLK
};
ESP_ERROR_CHECK(ledc_timer_config(&ledc_timer_4));
ledc_channel_config_t ledc_channel_4 = {
.speed_mode = MTR_MODE,
.channel = MTR_FRONT_LEFT_REV,
.timer_sel = MTR_FRONT_LEFT_REV_TMR,
.intr_type = LEDC_INTR_DISABLE,
.gpio_num = MTR_FRONT_LEFT_REV_IO,
.duty = MTR_FRONT_LEFT_REV_DUTY,
.hpoint = 0,
};
ESP_ERROR_CHECK(ledc_channel_config(&ledc_channel_4));
}
/* ESP-NOW */
// Wi-Fi should start before using ESP-NOW
static void wifi_init()
{
/*
* STAND-ALONE
*/
/*ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default());
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK( esp_wifi_init(&cfg) );
ESP_ERROR_CHECK( esp_wifi_set_storage(WIFI_STORAGE_RAM) );
ESP_ERROR_CHECK( esp_wifi_set_mode(WIFI_MODE_STA));//ESPNOW_WIFI_MODE));
ESP_ERROR_CHECK( esp_wifi_start());
ESP_ERROR_CHECK( esp_wifi_set_channel(CONFIG_ESPNOW_CHANNEL, WIFI_SECOND_CHAN_NONE));
#if CONFIG_ESPNOW_ENABLE_LONG_RANGE
ESP_ERROR_CHECK( esp_wifi_set_protocol(ESPNOW_WIFI_IF, WIFI_PROTOCOL_11B|WIFI_PROTOCOL_11G|WIFI_PROTOCOL_11N|WIFI_PROTOCOL_LR) );
#endif*/
/*
* WI-FI
*/
ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default());
esp_netif_create_default_wifi_sta();
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK( esp_wifi_init(&cfg) );
ESP_ERROR_CHECK( esp_wifi_set_storage(WIFI_STORAGE_RAM) );
ESP_ERROR_CHECK( esp_wifi_set_mode(WIFI_MODE_STA));//ESPNOW_WIFI_MODE));
wifi_config_t wifi_config = {
.sta = {
.ssid = WIFI_SSID,//"IoT_bots2",
.password = WIFI_PASSWORD,// "208208208",
},
};
ESP_ERROR_CHECK (esp_wifi_set_config(WIFI_IF_STA, &wifi_config));
//ESP_ERROR_CHECK( esp_wifi_set_channel(CONFIG_ESPNOW_CHANNEL, WIFI_SECOND_CHAN_NONE));
ESP_ERROR_CHECK( esp_wifi_start());
//ESP_ERROR_CHECK( esp_wifi_set_channel(CONFIG_ESPNOW_CHANNEL, WIFI_SECOND_CHAN_NONE));
ESP_ERROR_CHECK( esp_wifi_connect() );
}
static void led_task (void *arg) {
while(1) {
//ESP_LOGI(TAG, "Turning the LED %s!", s_led_state == true ? "ON" : "OFF");
gpio_set_level(BLINK_GPIO, s_led_state);
vTaskDelay(CONFIG_BLINK_PERIOD / portTICK_PERIOD_MS);
s_led_state = !s_led_state;
}
}
static void temp_sensor_task (void *arg) {
while (true) {
ESP_LOGI("ESP32-C3", "Reading sensor temperature");
float tsens_value;
ESP_ERROR_CHECK(temperature_sensor_get_celsius(temp_sensor, &tsens_value));
ESP_LOGW("ESP32-C3", "Temperature value %.02f ℃", tsens_value);
mqtt_update_temp (tsens_value);
vTaskDelay(5000 / portTICK_PERIOD_MS);
}
}
/* UPDATED MOTOR LOGIC */
static float clampf (float val, float min, float max) {
return (val < min) ? min : (val > max) ? max : val;
}
void joystick_mix (int X_raw, int Y_raw, int *pwm_a, int *pwm_b) {
// 1. Normalize joystick to [-1 .. +1]
float x = (float)(X_raw - 1020) / 1020.0f; float y = (float)(Y_raw - 1020) / 1020.0f;
// 2. Steering gain for smooth arcs
const float k = 0.4f;
// 3. Raw differential mix
float L0 = y + k * x;
float R0 = y - k * x;
// 4. Normalize pair so neither exceeds magnitude 1
float m = fmaxf(1.0f, fmaxf(fabsf(L0), fabsf(R0)));
float L = L0 / m;
float R = R0 / m;
// 5. Scale to signed PWM range [-8191 .. +8190]
float L_scaled = L * 8190.0f;
float R_scaled = R * 8190.0f;
// 6. Clamp and output as integers
*pwm_a = (int)clampf(L_scaled, -8191.0f, 8190.0f);
*pwm_b = (int)clampf(R_scaled, -8191.0f, 8190.0f);
}
// Task function to read joystick values and update motors rotation speeds.
static void rc_task (void *arg) {
while (true) {
// update_pwm (rc_x, rc_y); // Orginal motor update logic
joystick_mix (rc_y, rc_x, &pwm_motor_1, &pwm_motor_2);
update_motors_pwm (pwm_motor_1, pwm_motor_2); // Revised motor update logic
//ESP_LOGI("x,y", "( %d, %d ) [ %d, %d] ", rc_x, rc_y, x, y);
vTaskDelay (100 / portTICK_PERIOD_MS); // Determines responsiveness
//vTaskDelay (1000 / portTICK_PERIOD_MS);
}
}
static void display_xy() {
while (true) {
ESP_LOGI("x,y", "( %d, %d ) [ %d, %d] ", rc_x, rc_y, x, y);
ESP_LOGI("PWM", "M1: %d, M2: %d, M3: %d, M4: %d",
m.motor1_rpm_pcm, m.motor2_rpm_pcm,
m.motor3_rpm_pcm, m.motor4_rpm_pcm);
joystick_mix (rc_y, rc_x, &pwm_motor_1, &pwm_motor_2);
ESP_LOGI("Converted PWM", "M1+M2: %d, M3+M4: %d", pwm_motor_1, pwm_motor_2);
uint8_t channel;
wifi_band_t band;
esp_wifi_get_channel(&channel, NULL);
esp_wifi_get_band(&band);
ESP_LOGI(TAG, "Wi-Fi Channel: %d, Band: %d", channel, band);
vTaskDelay (1000 / portTICK_PERIOD_MS);
}
}
/*
EXP32-C3 Chip built-in temprature sensor
Read & display the temperature value
*/
static void chip_sensor_init () {
temp_sensor = NULL;
temperature_sensor_config_t temp_sensor_config = TEMPERATURE_SENSOR_CONFIG_DEFAULT(10, 50);
ESP_ERROR_CHECK(temperature_sensor_install(&temp_sensor_config, &temp_sensor));
ESP_LOGI(TAG, "Enable temperature sensor");
ESP_ERROR_CHECK(temperature_sensor_enable(temp_sensor));
}
static void display_chip_temperature () {
ESP_LOGI("ESP32-C3", "Reading sensor temperature");
ESP_ERROR_CHECK(temperature_sensor_get_celsius(temp_sensor, &tsens_value));
ESP_LOGW("ESP32-C3", "Temperature value %.02f ℃", tsens_value);
}
// ESP-NOW callback on data received
void onDataReceived (const uint8_t *mac_addr, const uint8_t *data, uint8_t data_len) {
memcpy(&buf, data, sizeof(buf)); // Write buffer into the struct
rc_x = buf.x_axis; // Save joystic x-axis value
rc_y = buf.y_axis; // Save joystic y-axis value
// Update motors PWM values from received data
m.motor1_rpm_pcm = buf.motor1_rpm_pcm;
m.motor2_rpm_pcm = buf.motor2_rpm_pcm;
m.motor3_rpm_pcm = buf.motor3_rpm_pcm;
m.motor4_rpm_pcm = buf.motor4_rpm_pcm;
// Update motors PWM values using joystick x- and y-axis values
update_pwm(rc_x, rc_y);
mqtt_update_pwm_1(rc_x); // Publish PWM-1 on MQTT Broker
mqtt_update_pwm_2(rc_y); // Publish PWM-2 on MQTT Broker
}
void ultrasonic_task (void *arg) {
ultrasonic_sensor_t sensor = {
.trigger_gpio = GPIO_NUM_4, // Example GPIO for trigger
.echo_gpio = GPIO_NUM_5 // Example GPIO for echo
};
ESP_ERROR_CHECK(ultrasonic_init(&sensor));
uint32_t time_us;
while (true) {
ESP_ERROR_CHECK(ultrasonic_measure_raw(&sensor, PING_TIMEOUT, &time_us));
float distance_cm = (float)time_us / ROUNDTRIP_CM;
ESP_LOGI(TAG, "Distance: %.2f cm", distance_cm);
vTaskDelay(1000 / portTICK_PERIOD_MS);
}
}
void task(void *pvParameters)
{
ina219_t dev;
memset(&dev, 0, sizeof(ina219_t));
assert(CONFIG_EXAMPLE_SHUNT_RESISTOR_MILLI_OHM > 0);
ESP_ERROR_CHECK(ina219_init_desc(&dev, I2C_ADDR, I2C_PORT, CONFIG_EXAMPLE_I2C_MASTER_SDA, CONFIG_EXAMPLE_I2C_MASTER_SCL));
ESP_LOGI(TAG, "Initializing INA219");
ESP_ERROR_CHECK(ina219_init(&dev));
ESP_LOGI(TAG, "Configuring INA219");
ESP_ERROR_CHECK(ina219_configure(&dev, INA219_BUS_RANGE_16V, INA219_GAIN_0_125,
INA219_RES_12BIT_1S, INA219_RES_12BIT_1S, INA219_MODE_CONT_SHUNT_BUS));
ESP_LOGI(TAG, "Calibrating INA219");
ESP_ERROR_CHECK(ina219_calibrate(&dev, (float)CONFIG_EXAMPLE_SHUNT_RESISTOR_MILLI_OHM / 1000.0f));
float bus_voltage, shunt_voltage, current, power;
ESP_LOGI(TAG, "Starting the loop");
while (1)
{
ESP_ERROR_CHECK(ina219_get_bus_voltage(&dev, &bus_voltage));
ESP_ERROR_CHECK(ina219_get_shunt_voltage(&dev, &shunt_voltage));
ESP_ERROR_CHECK(ina219_get_current(&dev, &current));
ESP_ERROR_CHECK(ina219_get_power(&dev, &power));
/* Using float in printf() requires non-default configuration in
* sdkconfig. See sdkconfig.defaults.esp32 and
* sdkconfig.defaults.esp8266 */
printf("VBUS: %.04f V, VSHUNT: %.04f mV, IBUS: %.04f mA, PBUS: %.04f mW\n",
bus_voltage, shunt_voltage * 1000, current * 1000, power * 1000);
uint8_t channel;
wifi_band_t band;
esp_wifi_get_channel(&channel, NULL);
esp_wifi_get_band(&band);
printf("Wi-Fi Channel: %d, Band:%d\n", channel, band);
//ESP_LOGE(TAG, "Wi-Fi Channel: %d, Band: %d", channel, band);
mqtt_update_battery_voltage(bus_voltage);
mqtt_update_sys_current(1000.00*current);
mqtt_update_sys_power(power);
vTaskDelay(pdMS_TO_TICKS(2500));
}
}
void app_main(void)
{
// Initialize NVS before Wi-Fi
esp_err_t ret = nvs_flash_init();
if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) {
ESP_ERROR_CHECK(nvs_flash_erase());
ret = nvs_flash_init();
}
ESP_ERROR_CHECK(ret);
// MOTORS
motors_init();
// Use wifi_init() for ESP-NOW and Wi-Fi setup
wifi_init();
// Initialize internal temperature sensor
chip_sensor_init();
xTaskCreate(temp_sensor_task, "ESP32C3 Sensor", 2048, NULL, 15, NULL);
// Initialize LED
ledc_init();
int var = 8191;
gpio_config_t io_conf = {};
// Configure on-board LED
gpio_reset_pin(BLINK_GPIO);
gpio_set_direction(BLINK_GPIO, GPIO_MODE_OUTPUT);
xTaskCreate(led_task, "LED", 2048, NULL, 15, NULL);
// Configure on-board push button
io_conf.intr_type = GPIO_INTR_POSEDGE;
io_conf.pin_bit_mask = GPIO_INPUT_PIN_SEL;
io_conf.mode = GPIO_MODE_INPUT;
io_conf.pull_up_en = 1;
gpio_config(&io_conf);
gpio_set_intr_type(PUSH_BTN_GPIO, GPIO_INTR_NEGEDGE);
gpio_evt_queue = xQueueCreate(10, sizeof(uint32_t));
xTaskCreate(gpio_task, "GPIO task", 2048, NULL, 10, NULL);
gpio_install_isr_service(ESP_INTR_FLAG_DEFAULT);
gpio_isr_handler_add(PUSH_BTN_GPIO, gpio_isr_handler, (void*) PUSH_BTN_GPIO);
// Configure navigation button
io_conf.intr_type = GPIO_INTR_NEGEDGE;
io_conf.pin_bit_mask = GPIO_INPUT_PIN_SEL;
io_conf.mode = GPIO_MODE_INPUT;
io_conf.pull_up_en = 1;
gpio_config(&io_conf);
gpio_set_intr_type(NAV_BTN, GPIO_INTR_NEGEDGE);
gpio_evt_queue = xQueueCreate(10, sizeof(uint32_t));
xTaskCreate(nav_key_task, "NAV Keys task", 2048, NULL, 10, NULL);
gpio_isr_handler_add(NAV_BTN, gpio_isr_handler, (void*) NAV_BTN);
configure_button();
printf("Added button interrupt");
mqtt_app_start();
// Initialize buffer with 0s
buf.x_axis = 0;
buf.y_axis = 0;
buf.motor1_rpm_pcm = 0;
esp_now_init();
esp_now_register_recv_cb((void*)onDataReceived);
// ADC
rc_adc_init();
xTaskCreate(rc_task, "RC", 2048, NULL, 5, NULL);
ESP_ERROR_CHECK(i2cdev_init());
xTaskCreate(task, "test", configMINIMAL_STACK_SIZE * 8, NULL, 5, NULL);
xTaskCreate(display_xy, "coordinates", configMINIMAL_STACK_SIZE * 8, NULL, 4, NULL);
}
## config.h
#ifndef CONFIG_H
#define CONFIG_H
// MOTORS PWM CONFIG
#define MTR_FREQUENCY (7000) // 1000
#define MTR_MODE LEDC_LOW_SPEED_MODE
#define MTR_DUTY_RES LEDC_TIMER_13_BIT // 13-bit resolution supports maximum duty value 8192 (8)
// LEFT SIDE MOTORS, FORWARD
#define MTR_FRONT_LEFT_IO (6)
#define MTR_FRONT_LEFT_TMR LEDC_TIMER_0
#define MTR_FRONT_LEFT LEDC_CHANNEL_1
#define MTR_FRONT_LEFT_DUTY (3361)
// RIGHT SIDE MOTORS, FORWARD
#define MTR_FRONT_RIGHT_IO (5)
#define MTR_FRONT_RIGHT_TMR LEDC_TIMER_1
#define MTR_FRONT_RIGHT LEDC_CHANNEL_0
#define MTR_FRONT_RIGHT_DUTY (3361)
// LEFT SIDE MOTORS, REVERSE
#define MTR_FRONT_LEFT_REV_IO (4)
#define MTR_FRONT_LEFT_REV_TMR LEDC_TIMER_2
#define MTR_FRONT_LEFT_REV LEDC_CHANNEL_2
#define MTR_FRONT_LEFT_REV_DUTY (3361)
// RIGHT SIDE MOTORS, REVERSE
#define MTR_FRONT_RIGHT_REV_IO (7)
#define MTR_FRONT_RIGHT_REV_TMR LEDC_TIMER_3
#define MTR_FRONT_RIGHT_REV LEDC_CHANNEL_3
#define MTR_FRONT_RIGHT_REV_DUTY (3361)
//#define LEDC_DUTY (3361) //7820) // 8068, 7944, 7820, 7696, 7572, *7680*, 7424, 7168, 6144, 512, 768
//#define LEDC_FREQUENCY (2500) //8192) //4000) // For LED the freuqncy of 500Hz seems to be sufficient. // Frequency in Hertz. For DC motor, set frequency at 5 kHz; try 1kHz @ 14 bits resolution
#endif
### mqtt.c
#include "mqtt_client.h"
#include "esp_wifi.h"
#include "esp_log.h"
#include "esp_event.h"
#include "mqtt.h"
//static const char* MQTT_BROKER_URI = "mqtt://10.100.50.16:1883";//74.14.210.168";//"mqtt://mqtt.techquadbit.net";
static const char* MQTT_BROKER_URI = "mqtt://74.14.210.168";//"mqtt://mqtt.techquadbit.net";
static const char* MQTT_TAG = "MQTT_Robot";
static esp_mqtt_client_handle_t mqtt_client = NULL;
static float temp_value = 0.0f;
static float battery_voltage = 0.0f;
static float sys_current = 0.0f;
static float sys_power = 0.0f;
static int pwm_1 = 0, pwm_2 = 0, pwm_3 = 0, pwm_4 = 0;
static void mqtt_publish_task(void *arg) {
esp_mqtt_client_handle_t client = (esp_mqtt_client_handle_t)arg;
while (1) {
//float tsens_value = 0.0f;
//temperature_sensor_get_celsius(temp_sensor, &tsens_value);
ESP_LOGW("ESP32-C3", "Temperature value %.02f ℃", temp_value);
char temp_str[6], battery_voltage_str[8], sys_current_str[8], sys_power_str[8];
char pwm_1_str[5], pwm_2_str[5], pwm_3_str[5], pwm_4_str[5];
snprintf(temp_str, sizeof(temp_str), "%.02f", temp_value);
snprintf(battery_voltage_str, sizeof(battery_voltage_str), "%.02f", battery_voltage);
snprintf(sys_current_str, sizeof(sys_current_str), "%.02f", sys_current);
snprintf(sys_power_str, sizeof(sys_power_str), "%.02f", sys_power);
snprintf(pwm_1_str, sizeof(pwm_1_str), "%d", pwm_1);
snprintf(pwm_2_str, sizeof(pwm_2_str), "%d", pwm_2);
snprintf(pwm_3_str, sizeof(pwm_3_str), "%d", pwm_3);
snprintf(pwm_4_str, sizeof(pwm_4_str), "%d", pwm_4);
// Publish a message every 5 seconds
esp_mqtt_client_publish(mqtt_client, "/bitrider/temp", temp_str, 0, 1, 0);
esp_mqtt_client_publish(mqtt_client, "/bitrider/battery_voltage", battery_voltage_str, 0, 1, 0);
esp_mqtt_client_publish(mqtt_client, "/bitrider/sys_current", sys_current_str, 0, 1, 0);
esp_mqtt_client_publish(mqtt_client, "/bitrider/sys_power", sys_power_str, 0, 1, 0);
esp_mqtt_client_publish(mqtt_client, "/bitrider/pwm-1", pwm_1_str, 0, 1, 0);
esp_mqtt_client_publish(mqtt_client, "/bitrider/pwm-2", pwm_2_str, 0, 1, 0);
/*esp_mqtt_client_publish(mqtt_client, "/bitrider/pwm-3", pwm_3_str, 0, 1, 0);
esp_mqtt_client_publish(mqtt_client, "/bitrider/pwm-4", pwm_4_str, 0, 1, 0);*/
vTaskDelay(pdMS_TO_TICKS(1000));
ESP_LOGI(MQTT_TAG, "Called task to publish topic /bitrider/temp");
}
}
void mqtt_update_temp (float temp) { temp_value = temp; }
void mqtt_update_battery_voltage (float voltage) { battery_voltage = voltage; }
void mqtt_update_sys_current (float current) { sys_current = current; }
void mqtt_update_sys_power (float power) { sys_power = power; }
void mqtt_update_pwm_1 (int pwm) { pwm_1 = pwm; }
void mqtt_update_pwm_2 (int pwm) { pwm_2 = pwm; }
void mqtt_update_pwm_3 (int pwm) { pwm_3 = pwm; }
void mqtt_update_pwm_4 (int pwm) { pwm_4 = pwm; }
static void mqtt_event_handler(void *handler_args, esp_event_base_t base, int32_t event_id, void *event_data) {
esp_mqtt_event_handle_t event = event_data;
esp_mqtt_client_handle_t client = event->client;
switch ((esp_mqtt_event_id_t)event_id) {
case MQTT_EVENT_CONNECTED:
ESP_LOGI(MQTT_TAG, "MQTT_EVENT_CONNECTED");
esp_mqtt_client_publish(client, "/esp/test", "Hello from ESP32-C3!", 0, 1, 0);
mqtt_client = client;
xTaskCreate(mqtt_publish_task, "mqtt_publish_task", 8192, NULL, 5, NULL);
break;
case MQTT_EVENT_DISCONNECTED:
ESP_LOGI(MQTT_TAG, "MQTT_EVENT_DISCONNECTED");
break;
default:
break;
}
}
void mqtt_publish() {
esp_mqtt_client_handle_t client = esp_mqtt_client_init(NULL);
esp_mqtt_client_register_event(client, ESP_EVENT_ANY_ID, mqtt_event_handler, NULL);
esp_mqtt_client_start(client);
// Publish a message
esp_mqtt_client_publish(client, "/esp/test", "Hello from Alex!", 0, 1, 0);
// Stop the client
esp_mqtt_client_stop(client);
}
void mqtt_app_start(void) {
esp_mqtt_client_config_t mqtt_cfg = {
.broker.address.uri = MQTT_BROKER_URI,
};
esp_mqtt_client_handle_t client = esp_mqtt_client_init(&mqtt_cfg);
esp_mqtt_client_register_event(client, ESP_EVENT_ANY_ID, mqtt_event_handler, NULL);
esp_mqtt_client_start(client);
}
/*void sta_wifi_init(void) {
esp_netif_init();
esp_event_loop_create_default();
esp_netif_create_default_wifi_sta();
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
esp_wifi_init(&cfg);
wifi_config_t wifi_config = {
.sta = {
.ssid = WIFI_SSID,
.password = WIFI_PASSWORD,
},
};
esp_wifi_set_mode(WIFI_MODE_STA);
esp_wifi_set_config(WIFI_IF_STA, &wifi_config);
esp_wifi_start();
esp_wifi_connect();
}*/
## mqtt.h
#ifndef __MQTT_H__
#define __MQTT_H__
#include "mqtt_client.h"
#include "esp_wifi.h"
//static const char WIFI_SSID;
#define WIFI_SSID "IoT_bots"
//static const char WIFI_PASSWORD;
#define WIFI_PASSWORD "208208208"
static const char* MQTT_BROKER_URI;
static const char* MQTT_TAG;
static esp_mqtt_client_handle_t mqtt_client;;
static void mqtt_event_handler(void *handler_args, esp_event_base_t base, int32_t event_id, void *event_data);
static void mqtt_publish_task(void *arg);
void mqtt_app_start(void);
void mqtt_publish(void);
static float temp_value, battery_voltage, sys_current, sys_power;
void mqtt_update_temp (float temp);
void mqtt_update_battery_voltage (float voltage);
void mqtt_update_sys_current (float current);
void mqtt_update_sys_power (float power);
void mqtt_update_pwm_1 (int pwm);
void mqtt_update_pwm_2 (int pwm);
void mqtt_update_pwm_3 (int pwm);
void mqtt_update_pwm_4 (int pwm);
void sta_wifi_init(void);
#endif
## rc.h
#ifndef RC_H
#define RC_H
#include "driver/adc.h"
#include "esp_adc_cal.h"
#include "esp_adc/adc_oneshot.h"
#include "esp_adc/adc_continuous.h"
#include "esp_adc/adc_cali.h"
#include "esp_adc/adc_cali_scheme.h"
#include "controls.h"
#include "config.h"
#define ADC_CHNL ADC_CHANNEL_1
#define ADC_ATTEN ADC_ATTEN_DB_11
#define ADC1_CHAN0 ADC1_CHANNEL_0
#define ADC1_CHAN1 ADC1_CHANNEL_1
//static const char *TAG = "ESP IDF Robot"
struct motors_rpm m;
static int adc_raw[2][10];
static int voltage[2][10];
static int s = 0, sample = 5, x = 0, y = 0, x_sum = 0, y_sum = 0;
bool do_calibration1_chan0, do_calibration1_chan1;
adc_cali_handle_t adc1_cali_chan0_handle, adc1_cali_chan1_handle;
adc_oneshot_unit_handle_t adc1_handle;
static bool adc_calibration_init(adc_unit_t unit, adc_channel_t channel, adc_atten_t atten, adc_cali_handle_t *out_handle);
static void adc_calibration_deinit(adc_cali_handle_t handle);
static int interpolate_raw_val (int raw);
static int rescale_raw_val (int raw);
static esp_err_t rc_adc_init (void) {
adc_oneshot_unit_init_cfg_t init_config1 = {
.unit_id = ADC_UNIT_1,
};
ESP_ERROR_CHECK( adc_oneshot_new_unit(&init_config1, &adc1_handle));
adc_oneshot_chan_cfg_t config = {
.bitwidth = SOC_ADC_DIGI_MAX_BITWIDTH,//ADC_BITWIDTH_DEFAULT,
.atten = ADC_ATTEN,
};
ESP_ERROR_CHECK(adc_oneshot_config_channel(adc1_handle, ADC1_CHAN0, &config));
ESP_ERROR_CHECK(adc_oneshot_config_channel(adc1_handle, ADC1_CHAN1, &config));
//-------------ADC1 Calibration Init---------------//
adc1_cali_chan0_handle = NULL;
adc1_cali_chan1_handle = NULL;
do_calibration1_chan0 = adc_calibration_init(ADC_UNIT_1, ADC1_CHAN0, ADC_ATTEN, &adc1_cali_chan0_handle);
do_calibration1_chan1 = adc_calibration_init(ADC_UNIT_1, ADC1_CHAN1, ADC_ATTEN, &adc1_cali_chan1_handle);
return ESP_OK;
}
static int check_motor_pcm(int x) {
int lim = 7440;
if (x > lim)
return 8190;//lim;
else if (x < -lim)
return -8190;//-lim;
else
return x;
}
// Update PWM based on received values
// IMPORTANT: x and y values correspod to the PWM!
static void update_pwm (int rc_x, int rc_y) {
x = check_motor_pcm(rescale_raw_val(rc_x));
y = check_motor_pcm(rescale_raw_val(rc_y));
//ESP_LOGI("x,y", "( %d, %d ) [ %d, %d] ", rc_x, rc_y, x, y);
/*if (s < sample) {
x_sum += check_motor_pcm(rescale_raw_val(x));
y_sum += check_motor_pcm(rescale_raw_val(y));
s ++;
}
else if (s == sample) {
//x = check_motor_pcm(rescale_raw_val(adc_raw[0][0]));
//y = check_motor_pcm(rescale_raw_val(adc_raw[0][1]));
x = x_sum / sample;
y = y_sum / sample;
s++;*/
/*
(+, +0) (+, +) (+0, +)
(-, +) (0, 0) (+, -)
(-, -0) (-, -) (-0, -)
if (1024 < x < 2048 && 1024 < y < 2048) {}
*/
// ADDED ON AUG 6, 2025: to be tested!
// CONTINOUS UPDATE
int x_val = x;
int y_val = y;
int x_centered = x_val - 2048;
int y_centered = x_val - 2048;
// Map joystick to motor direction from y-axis
int motor_a_dir = y_centered >= 0 ? 1 : -1;
int motor_b_dir = y_centered >= 0 ? 1 : -1;
int motor_a_speed = abs(y_centered) * 8192 / 2048;
int motor_b_speed = abs(y_centered) * 8192 / 2048;
// Add turning effect from x-axis
motor_a_speed -= x_centered * 8192 / 2048;
motor_b_speed += x_centered * 8192 / 2048;
// Clamp speeds
if (motor_a_speed < 0) motor_a_speed = 0;
if (motor_b_speed < 0) motor_b_speed = 0;
if (motor_a_speed > 8192) motor_a_speed = 8192;
if (motor_b_speed > 8192) motor_b_speed = 8192;
//set_motor_direction();
//set_motor_speed();
// Pass PWM values to the proper DC motors depending on the joystick y-axis position
// Forward
/*if (y_val > y_centered) {
m.motor1_rpm_pcm = motor_a_speed;
m.motor2_rpm_pcm = motor_b_speed;
m.motor3_rpm_pcm = 0;
m.motor4_rpm_pcm = 0;
}
// Reverse
if (y_val < y_centered) {
m.motor1_rpm_pcm = motor_a_speed;
m.motor2_rpm_pcm = motor_b_speed;
m.motor3_rpm_pcm = 0;
m.motor4_rpm_pcm = 0;
}*/
/*
// Turn Left
if (x == 8190 && y == -8190) {
m.motor1_rpm_pcm = 6172;
m.motor2_rpm_pcm = 8190;
m.motor3_rpm_pcm = 0;
m.motor4_rpm_pcm = 0;
}
else if (x == 8190 && y == 8190) {
m.motor1_rpm_pcm = 8190;
m.motor2_rpm_pcm = 6172;
m.motor3_rpm_pcm = 0;
m.motor4_rpm_pcm = 0;
}
else if (x == -8190 && y == -8190) {
m.motor1_rpm_pcm = 0;
m.motor2_rpm_pcm = 0;
m.motor3_rpm_pcm = 6172;
m.motor4_rpm_pcm = 8190;
}
else if (x == -8190 && y == 8190) {
m.motor1_rpm_pcm = 0;
m.motor2_rpm_pcm = 0;
m.motor3_rpm_pcm = 8190;
m.motor4_rpm_pcm = 6172;
}*/
// FORWARD AND REVERSE
//if ((x > 1500) && (y > 700 && y < 850)) {
else if ((x > 1500) && (y > -2500 && y < 2500)) {
//ESP_LOGW("ESP-NOW", "FORWARD");
// Both sides rotate in forward direction.
m.motor1_rpm_pcm = x; // left, forward
m.motor2_rpm_pcm = x; // right, forward
m.motor3_rpm_pcm = 0;
m.motor4_rpm_pcm = 0;
}
//else if ((x < 0) && (y > 700 && y < 850)) {
else if ((x < 0) && (y > -2500 && y < 2500)) {
//ESP_LOGW("ESP-NOW", "REVERSE");
// Both sides rotate in reverse direction.
m.motor1_rpm_pcm = 0;
m.motor2_rpm_pcm = 0;
m.motor3_rpm_pcm = -x;
m.motor4_rpm_pcm = -x;
}
// ROTATE CLOCKWISE AND COUNTER CLOCKWISE
else if ((x > -2500 && x < 2500) && (y < 0)) {
//ESP_LOGW("ESP-NOW", "LEFT");
// Left side rotates in forward direction, right side rotates in reverse direction.
m.motor1_rpm_pcm = 0;//-y;
m.motor2_rpm_pcm = -y;//0;
m.motor3_rpm_pcm = 0;//-y;
m.motor4_rpm_pcm = -y;//0;
}
else if ((x > -2500 && x < 2500) && (y > 900)) {
//ESP_LOGW("ESP-NOW", "RIGHT");
// Right side rotates in forward direction, left side rotates in reverse direction.
m.motor1_rpm_pcm = y;//0;
m.motor2_rpm_pcm = 0;//y;
m.motor3_rpm_pcm = y;//0;
m.motor4_rpm_pcm = 0;//y;
}
else {
//ESP_LOGW("ESP-NOW", "STAND STILL");
m.motor1_rpm_pcm = 0;
m.motor2_rpm_pcm = 0;
m.motor3_rpm_pcm = 0;
m.motor4_rpm_pcm = 0;
}
ledc_set_duty(MTR_MODE, MTR_FRONT_LEFT, m.motor1_rpm_pcm);
ledc_update_duty(MTR_MODE, MTR_FRONT_LEFT);
ledc_set_duty(MTR_MODE, MTR_FRONT_RIGHT, m.motor2_rpm_pcm);
ledc_update_duty(MTR_MODE, MTR_FRONT_RIGHT);
ledc_set_duty(MTR_MODE, MTR_FRONT_LEFT_REV, m.motor3_rpm_pcm);
ledc_update_duty(MTR_MODE, MTR_FRONT_LEFT_REV);
ledc_set_duty(MTR_MODE, MTR_FRONT_RIGHT_REV, m.motor4_rpm_pcm);
ledc_update_duty(MTR_MODE, MTR_FRONT_RIGHT_REV);
}
static void update_motors_pwm (int pwm_motor_1, int pwm_motor_2) {
/* UPDATED MOTOR LOGIC */
if (pwm_motor_1 >= 0 && pwm_motor_2 >= 0) {
m.motor1_rpm_pcm = pwm_motor_1;
m.motor2_rpm_pcm = pwm_motor_2;
m.motor3_rpm_pcm = 0;
m.motor4_rpm_pcm = 0;
}
if (pwm_motor_1 > 0 && pwm_motor_2 < 0) {
m.motor1_rpm_pcm = pwm_motor_1;
m.motor2_rpm_pcm = 0;
m.motor3_rpm_pcm = -pwm_motor_2;
m.motor4_rpm_pcm = 0;
}
if (pwm_motor_1 < 0 && pwm_motor_2 > 0) {
m.motor1_rpm_pcm = 0;
m.motor2_rpm_pcm = -pwm_motor_1;
m.motor3_rpm_pcm = 0;
m.motor4_rpm_pcm = pwm_motor_2;
}
if (pwm_motor_1 < 0 && pwm_motor_2 < 0) {
m.motor1_rpm_pcm = 0;
m.motor2_rpm_pcm = 0;
m.motor3_rpm_pcm = -pwm_motor_1;
m.motor4_rpm_pcm = -pwm_motor_2;
}
ledc_set_duty(MTR_MODE, MTR_FRONT_LEFT, m.motor1_rpm_pcm);
ledc_update_duty(MTR_MODE, MTR_FRONT_LEFT);
ledc_set_duty(MTR_MODE, MTR_FRONT_RIGHT, m.motor2_rpm_pcm);
ledc_update_duty(MTR_MODE, MTR_FRONT_RIGHT);
ledc_set_duty(MTR_MODE, MTR_FRONT_LEFT_REV, m.motor3_rpm_pcm);
ledc_update_duty(MTR_MODE, MTR_FRONT_LEFT_REV);
ledc_set_duty(MTR_MODE, MTR_FRONT_RIGHT_REV, m.motor4_rpm_pcm);
ledc_update_duty(MTR_MODE, MTR_FRONT_RIGHT_REV);
ESP_LOGW("MTR LGC", "M1: %d, M2: %d, M3: %d, M4: %d",
m.motor1_rpm_pcm,
m.motor2_rpm_pcm,
m.motor3_rpm_pcm,
m.motor4_rpm_pcm);
}
/*static void rc_get_raw_data() {
ESP_ERROR_CHECK(adc_oneshot_read(adc1_handle, ADC1_CHAN0, &adc_raw[0][0]));
ESP_ERROR_CHECK(adc_oneshot_read(adc1_handle, ADC1_CHAN1, &adc_raw[0][1]));
ESP_LOGI("ESP IDF Robot", "ADC%d Channel[%d] Raw Data: %d", ADC_UNIT_1 + 1, ADC1_CHAN0, adc_raw[0][0]);
ESP_LOGI("ESP IDF Robot", "ADC%d Channel[%d] Raw Data: %d", ADC_UNIT_1 + 1, ADC1_CHAN1, adc_raw[0][1]);
ESP_LOGI("Joystick L/R", "Position: %d (%d)", rescale_raw_val(adc_raw[0][0]), check_motor_pcm(rescale_raw_val(adc_raw[0][0])));
ESP_LOGI("Joystick F", "Position: %d (%d)", rescale_raw_val(adc_raw[0][1]), check_motor_pcm(rescale_raw_val(adc_raw[0][1])));
ESP_LOGW("Joystick", " sample %d, (x,y): (%d, %d)", sample, x, y);
if (s < sample) {
x_sum += check_motor_pcm(rescale_raw_val(adc_raw[0][0]));
y_sum += check_motor_pcm(rescale_raw_val(adc_raw[0][1]));
s ++;
}
else if (s == sample) {
//x = check_motor_pcm(rescale_raw_val(adc_raw[0][0]));
//y = check_motor_pcm(rescale_raw_val(adc_raw[0][1]));
x = x_sum / sample;
y = y_sum / sample;
//x = buf.x_axis;
//y = buf.y_axis;
if ((x > 0 && x < 500) && (y > 500)) {
ESP_LOGW("RC", "FORWARD");
// Both sides rotate in forward direction.
m.motor1_rpm_pcm = y; // left, forward
m.motor2_rpm_pcm = y; // right, forward
m.motor3_rpm_pcm = 0;
m.motor4_rpm_pcm = 0;
}
else if ((x > 0 && x < 500) && (y < -200)) {
ESP_LOGW("RC", "REVERSE");
// Both sides rotate in reverse direction.
m.motor1_rpm_pcm = 0;
m.motor2_rpm_pcm = 0;
m.motor3_rpm_pcm = -y;
m.motor4_rpm_pcm = -y;
}
else if ((y < 0 && y > -200) && (x < -1000)) {
ESP_LOGW("RC", "LEFT");
// Left side rotates in forward direction, right side rotates in reverse direction.
m.motor1_rpm_pcm = -x;
m.motor2_rpm_pcm = 0;
m.motor3_rpm_pcm = -x;
m.motor4_rpm_pcm = 0;
}
else if ((y < 0 && y > -200) && (x > 1000)) {
ESP_LOGW("RC", "RIGHT");
// Right side rotates in forward direction, left side rotates in reverse direction.
m.motor1_rpm_pcm = 0;
m.motor2_rpm_pcm = x;
m.motor3_rpm_pcm = 0;
m.motor4_rpm_pcm = x;
}
else {
ESP_LOGW("RC", "STAND STILL");
m.motor1_rpm_pcm = 0;
m.motor2_rpm_pcm = 0;
m.motor3_rpm_pcm = 0;
m.motor4_rpm_pcm = 0;
}
s++;
}
else {
x_sum = 0;
y_sum = 0;
s = 0;
}
ESP_LOGI("PWM", "Motor 1 PWM: %d", m.motor1_rpm_pcm);
ESP_LOGI("PWM", "Motor 2 PWM: %d", m.motor2_rpm_pcm);
ESP_LOGI("PWM", "Motor 3 PWM: %d", m.motor3_rpm_pcm);
ESP_LOGI("PWM", "Motor 4 PWM: %d", m.motor4_rpm_pcm);
if (do_calibration1_chan0) {
ESP_ERROR_CHECK(adc_cali_raw_to_voltage(adc1_cali_chan0_handle, adc_raw[0][0], &voltage[0][0]));
ESP_LOGI("ESP IDF Robot", "ADC%d Channel[%d] Cali Voltage: %d mV", ADC_UNIT_1 + 1, ADC1_CHAN0, voltage[0][0]);
}
if (do_calibration1_chan1) {
ESP_ERROR_CHECK(adc_cali_raw_to_voltage(adc1_cali_chan1_handle, adc_raw[0][1], &voltage[0][1]));
ESP_LOGI("ESP IDF Robot", "ADC%d Channel[%d] Cali Voltage: %d mV", ADC_UNIT_1 + 1, ADC1_CHAN1, voltage[0][1]);
}
}*/
static bool adc_calibration_init(adc_unit_t unit, adc_channel_t channel, adc_atten_t atten, adc_cali_handle_t *out_handle)
{
adc_cali_handle_t handle = NULL;
esp_err_t ret = ESP_FAIL;
bool calibrated = false;
#if ADC_CALI_SCHEME_CURVE_FITTING_SUPPORTED
if (!calibrated) {
ESP_LOGI("ESP IDF Robot", "calibration scheme version is %s", "Curve Fitting");
adc_cali_curve_fitting_config_t cali_config = {
.unit_id = unit,
.chan = channel,
.atten = atten,
.bitwidth = ADC_BITWIDTH_DEFAULT,
};
ret = adc_cali_create_scheme_curve_fitting(&cali_config, &handle);
if (ret == ESP_OK) {
calibrated = true;
}
}
#endif
#if ADC_CALI_SCHEME_LINE_FITTING_SUPPORTED
if (!calibrated) {
ESP_LOGI("ESP IDF Robot", "calibration scheme version is %s", "Line Fitting");
adc_cali_line_fitting_config_t cali_config = {
.unit_id = unit,
.atten = atten,
.bitwidth = ADC_BITWIDTH_DEFAULT,
};
ret = adc_cali_create_scheme_line_fitting(&cali_config, &handle);
if (ret == ESP_OK) {
calibrated = true;
}
}
#endif
*out_handle = handle;
if (ret == ESP_OK) {
ESP_LOGI("ESP IDF Robot", "Calibration Success");
} else if (ret == ESP_ERR_NOT_SUPPORTED || !calibrated) {
ESP_LOGW("ESP IDF Robot", "eFuse not burnt, skip software calibration");
} else {
ESP_LOGE("ESP IDF Robot", "Invalid arg or no memory");
}
return calibrated;
}
static void adc_calibration_deinit(adc_cali_handle_t handle)
{
#if ADC_CALI_SCHEME_CURVE_FITTING_SUPPORTED
ESP_LOGI("ESP IDF Robot", "deregister %s calibration scheme", "Curve Fitting");
ESP_ERROR_CHECK(adc_cali_delete_scheme_curve_fitting(handle));
#elif ADC_CALI_SCHEME_LINE_FITTING_SUPPORTED
ESP_LOGI("ESP IDF Robot", "deregister %s calibration scheme", "Line Fitting");
ESP_ERROR_CHECK(adc_cali_delete_scheme_line_fitting(handle));
#endif
}
#endif