esp32: Add core dump printing to UART feature

This commit is contained in:
Alexey Gerenkov
2017-01-03 14:16:41 +03:00
parent 4a3e160888
commit 23f836659d
5 changed files with 654 additions and 173 deletions

View File

@@ -11,6 +11,7 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
@@ -18,24 +19,199 @@
#include "esp_panic.h"
#include "esp_partition.h"
#ifdef ESP_PLATFORM
// Uncomment this line to force output from this module
#define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH || CONFIG_ESP32_ENABLE_COREDUMP_TO_UART
#include "esp_log.h"
static const char* TAG = "esp_core_dump_init";
#else
#define ESP_LOGD(...)
#endif
const static char *TAG = "esp_core_dump";
// TODO: allow user to set this in menuconfig or get tasks iteratively
#define COREDUMP_MAX_TASKS_NUM 32
typedef esp_err_t (*esp_core_dump_write_prepare_t)(void *priv, uint32_t *data_len);
typedef esp_err_t (*esp_core_dump_write_start_t)(void *priv);
typedef esp_err_t (*esp_core_dump_write_end_t)(void *priv);
typedef esp_err_t (*esp_core_dump_flash_write_data_t)(void *priv, void * data, uint32_t data_len);
typedef struct _core_dump_write_config_t
{
esp_core_dump_write_prepare_t prepare;
esp_core_dump_write_start_t start;
esp_core_dump_write_end_t end;
esp_core_dump_flash_write_data_t write;
void * priv;
} core_dump_write_config_t;
static void esp_core_dump_write(XtExcFrame *frame, core_dump_write_config_t *write_cfg, int verb)
{
union
{
uint8_t data8[12];
uint32_t data32[3];
} rom_data;
//const esp_partition_t *core_part;
esp_err_t err;
TaskSnapshot_t tasks[COREDUMP_MAX_TASKS_NUM];
UBaseType_t tcb_sz, task_num;
uint32_t data_len = 0, i, len;
//size_t off;
task_num = uxTaskGetSnapshotAll(tasks, COREDUMP_MAX_TASKS_NUM, &tcb_sz);
// take TCB padding into account, actual TCB size will be stored in header
if (tcb_sz % sizeof(uint32_t))
len = (tcb_sz / sizeof(uint32_t) + 1) * sizeof(uint32_t);
else
len = tcb_sz;
// header + tasknum*(tcb + stack start/end + tcb addr)
data_len = 3*sizeof(uint32_t) + task_num*(len + 2*sizeof(uint32_t) + sizeof(uint32_t *));
for (i = 0; i < task_num; i++) {
if (tasks[i].pxTCB == xTaskGetCurrentTaskHandle()) {
// set correct stack top for current task
tasks[i].pxTopOfStack = (StackType_t *)frame;
if (verb) {
esp_panicPutStr("Current task PC/A0/SP ");
esp_panicPutHex(frame->pc);
esp_panicPutStr(" ");
esp_panicPutHex(frame->a0);
esp_panicPutStr(" ");
esp_panicPutHex(frame->a1);
esp_panicPutStr("\r\n");
}
}
#if( portSTACK_GROWTH < 0 )
len = (uint32_t)tasks[i].pxEndOfStack - (uint32_t)tasks[i].pxTopOfStack;
#else
len = (uint32_t)tasks[i].pxTopOfStack - (uint32_t)tasks[i].pxEndOfStack;
#endif
if (verb) {
esp_panicPutStr("stack len = ");
esp_panicPutHex(len);
esp_panicPutStr(" ");
esp_panicPutHex((int)tasks[i].pxTopOfStack);
esp_panicPutStr(" ");
esp_panicPutHex((int)tasks[i].pxEndOfStack);
esp_panicPutStr("\r\n");
}
// take stack padding into account
if (len % sizeof(uint32_t))
len = (len / sizeof(uint32_t) + 1) * sizeof(uint32_t);
data_len += len;
}
// prepare write
if (write_cfg->prepare) {
err = write_cfg->prepare(write_cfg->priv, &data_len);
if (err != ESP_OK) {
esp_panicPutStr("ERROR: Failed to prepare core dump ");
esp_panicPutHex(err);
esp_panicPutStr("!\r\n");
return;
}
}
if (verb) {
esp_panicPutStr("Core dump len =");
esp_panicPutHex(data_len);
esp_panicPutStr("\r\n");
}
// write start marker
if (write_cfg->start) {
err = write_cfg->start(write_cfg->priv);
if (err != ESP_OK) {
esp_panicPutStr("ERROR: Failed to start core dump ");
esp_panicPutHex(err);
esp_panicPutStr("!\r\n");
return;
}
}
// write header
rom_data.data32[0] = data_len;
rom_data.data32[1] = task_num;
rom_data.data32[2] = tcb_sz;
err = write_cfg->write(write_cfg->priv, &rom_data, 3*sizeof(uint32_t));
if (err != ESP_OK) {
esp_panicPutStr("ERROR: Failed to write core dump header ");
esp_panicPutHex(err);
esp_panicPutStr("!\r\n");
return;
}
// write tasks
for (i = 0; i < task_num; i++) {
if (verb) {
esp_panicPutStr("Dump task ");
esp_panicPutHex((int)tasks[i].pxTCB);
esp_panicPutStr("\r\n");
}
// save TCB address, stack base and stack top addr
rom_data.data32[0] = (uint32_t)tasks[i].pxTCB;
rom_data.data32[1] = (uint32_t)tasks[i].pxTopOfStack;
rom_data.data32[2] = (uint32_t)tasks[i].pxEndOfStack;
err = write_cfg->write(write_cfg->priv, &rom_data, 3*sizeof(uint32_t));
if (err != ESP_OK) {
esp_panicPutStr("ERROR: Failed to write task header ");
esp_panicPutHex(err);
esp_panicPutStr("!\r\n");
return;
}
// save TCB
err = write_cfg->write(write_cfg->priv, tasks[i].pxTCB, tcb_sz);
if (err != ESP_OK) {
esp_panicPutStr("ERROR: Failed to write task header ");
esp_panicPutHex(err);
esp_panicPutStr("!\r\n");
return;
}
// save task stack
/*int k;
for (k = 0; k < 8*4; k++) {
esp_panicPutStr("stack[");
esp_panicPutDec(k);
esp_panicPutStr("] = ");
esp_panicPutHex(((uint8_t *)tasks[i].pxTopOfStack)[k]);
esp_panicPutStr("\r\n");
}*/
err = write_cfg->write(write_cfg->priv,
#if( portSTACK_GROWTH < 0 )
tasks[i].pxTopOfStack,
(uint32_t)tasks[i].pxEndOfStack - (uint32_t)tasks[i].pxTopOfStack
#else
tasks[i].pxEndOfStack,
(uint32_t)tasks[i].pxTopOfStack - (uint32_t)tasks[i].pxEndOfStack
#endif
);
if (err != ESP_OK) {
esp_panicPutStr("ERROR: Failed to write task header ");
esp_panicPutHex(err);
esp_panicPutStr("!\r\n");
return;
}
}
// write end marker
if (write_cfg->end) {
err = write_cfg->end(write_cfg->priv);
if (err != ESP_OK) {
esp_panicPutStr("ERROR: Failed to end core dump ");
esp_panicPutHex(err);
esp_panicPutStr("!\r\n");
return;
}
}
}
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
// magic numbers to control core dump data consistency
#define COREDUMP_FLASH_MAGIC_START 0xDEADBEEFUL
#define COREDUMP_FLASH_MAGIC_END 0xACDCFEEDUL
typedef struct _core_dump_write_flash_data_t
{
uint32_t off;
} core_dump_write_flash_data_t;
// core dump partition start
static uint32_t s_core_part_start;
// core dump partition size
@@ -79,6 +255,115 @@ static uint32_t esp_core_dump_write_flash_padded(size_t off, uint8_t *data, uint
return data_len;
}
static esp_err_t esp_core_dump_flash_write_prepare(void *priv, uint32_t *data_len)
{
esp_err_t err;
uint32_t sec_num;
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
esp_panicPutStr("Core dump len1 = ");
esp_panicPutHex(*data_len);
esp_panicPutStr("\r\n");
// add space for 2 magics. TODO: change to CRC
*data_len += 2*sizeof(uint32_t);
if (*data_len > s_core_part_size) {
esp_panicPutStr("ERROR: Not enough space to save core dump!");
return ESP_ERR_NO_MEM;
}
esp_panicPutStr("Core dump len2 = ");
esp_panicPutHex(*data_len);
esp_panicPutStr("\r\n");
wr_data->off = 0;
sec_num = *data_len / SPI_FLASH_SEC_SIZE;
if (*data_len % SPI_FLASH_SEC_SIZE)
sec_num++;
err = spi_flash_erase_range_panic(s_core_part_start + 0, sec_num * SPI_FLASH_SEC_SIZE);
if (err != ESP_OK) {
esp_panicPutStr("ERROR: Failed to erase flash ");
esp_panicPutHex(err);
esp_panicPutStr("!\r\n");
return err;
}
return err;
}
static esp_err_t esp_core_dump_flash_write_word(core_dump_write_flash_data_t *wr_data, uint32_t word)
{
esp_err_t err = ESP_OK;
uint32_t data32 = word;
err = spi_flash_write_panic(s_core_part_start + wr_data->off, &data32, sizeof(uint32_t));
if (err != ESP_OK) {
esp_panicPutStr("Failed to write to flash ");
esp_panicPutHex(err);
esp_panicPutStr("!\r\n");
return err;
}
wr_data->off += sizeof(uint32_t);
return err;
}
static esp_err_t esp_core_dump_flash_write_start(void *priv)
{
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
// save magic 1
return esp_core_dump_flash_write_word(wr_data, COREDUMP_FLASH_MAGIC_START);
}
static esp_err_t esp_core_dump_flash_write_end(void *priv)
{
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
uint32_t i;
union
{
uint8_t data8[16];
uint32_t data32[4];
} rom_data;
// TEST READ START
esp_err_t err = spi_flash_read_panic(s_core_part_start + 0, &rom_data, sizeof(rom_data));
if (err != ESP_OK) {
esp_panicPutStr("ERROR: Failed to read flash ");
esp_panicPutHex(err);
esp_panicPutStr("!\r\n");
return err;
}
else {
esp_panicPutStr("Data from flash:\r\n");
for (i = 0; i < sizeof(rom_data)/sizeof(rom_data.data32[0]); i++) {
esp_panicPutHex(rom_data.data32[i]);
esp_panicPutStr("\r\n");
}
// rom_data[4] = 0;
// esp_panicPutStr(rom_data);
// esp_panicPutStr("\r\n");
}
// TEST READ END
// save magic 2
return esp_core_dump_flash_write_word(wr_data, COREDUMP_FLASH_MAGIC_END);
}
static esp_err_t esp_core_dump_flash_write_data(void *priv, void * data, uint32_t data_len)
{
esp_err_t err = ESP_OK;
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
uint32_t len = esp_core_dump_write_flash_padded(s_core_part_start + wr_data->off, data, data_len);
if (len != data_len)
return ESP_FAIL;
wr_data->off += len;
return err;
}
/*
* | MAGIC1 |
* | TOTAL_LEN | TASKS_NUM | TCB_SIZE |
@@ -90,6 +375,19 @@ static uint32_t esp_core_dump_write_flash_padded(size_t off, uint8_t *data, uint
*/
void esp_core_dump_to_flash(XtExcFrame *frame)
{
#if 1
core_dump_write_config_t wr_cfg;
core_dump_write_flash_data_t wr_data;
wr_cfg.prepare = esp_core_dump_flash_write_prepare;
wr_cfg.start = esp_core_dump_flash_write_start;
wr_cfg.end = esp_core_dump_flash_write_end;
wr_cfg.write = esp_core_dump_flash_write_data;
wr_cfg.priv = &wr_data;
esp_panicPutStr("Save core dump to flash...\r\n");
esp_core_dump_write(frame, &wr_cfg, 1);
#else
union
{
uint8_t data8[16];
@@ -245,14 +543,150 @@ void esp_core_dump_to_flash(XtExcFrame *frame)
esp_panicPutStr("!\r\n");
return;
}
esp_panicPutStr("Core dump has been saved to flash partition.\r\n");
#endif
esp_panicPutStr("Core dump has been saved to flash.\r\n");
}
#endif
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART
#if 0
#define BASE64_ENCODE_BODY(_src, _src_len, _dst) \
do { \
static const char *b64 = \
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; \
int i, j, a, b, c; \
\
for (i = j = 0; i < _src_len; i += 3) { \
a = _src[i]; \
b = i + 1 >= _src_len ? 0 : _src[i + 1]; \
c = i + 2 >= _src_len ? 0 : _src[i + 2]; \
\
/*BASE64_OUT(b64[a >> 2], _dst[j]);*/ \
_dst[j++] = b64[a >> 2]; \
/*BASE64_OUT(b64[((a & 3) << 4) | (b >> 4)], _dst[j]);*/ \
_dst[j++] = b64[((a & 3) << 4) | (b >> 4)]; \
j++; \
if (i + 1 < _src_len) { \
BASE64_OUT(b64[(b & 15) << 2 | (c >> 6)], _dst[j]); \
j++; \
} \
if (i + 2 < _src_len) { \
BASE64_OUT(b64[c & 63], _dst[j]); \
j++; \
} \
} \
\
while (j % 4 != 0) { \
BASE64_OUT('=', _dst); \
} \
BASE64_FLUSH(_dst) \
} while(0)
#define BASE64_OUT(ch, _dst) \
do { \
_dst = (ch); \
} while (0)
#define BASE64_FLUSH(_dst) \
do { \
_dst = '\0'; \
} while (0)
#endif
static void esp_core_dump_b64_encode(const uint8_t *src, uint32_t src_len, uint8_t *dst) {
// BASE64_ENCODE_BODY(src, src_len, dst);
static const char *b64 =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
int i, j, a, b, c;
for (i = j = 0; i < src_len; i += 3) {
a = src[i];
b = i + 1 >= src_len ? 0 : src[i + 1];
c = i + 2 >= src_len ? 0 : src[i + 2];
dst[j++] = b64[a >> 2];
dst[j++] = b64[((a & 3) << 4) | (b >> 4)];
if (i + 1 < src_len) {
dst[j++] = b64[(b & 0x0F) << 2 | (c >> 6)];
}
if (i + 2 < src_len) {
dst[j++] = b64[c & 0x3F];
}
}
while (j % 4 != 0) {
dst[j++] = '=';
}
dst[j++] = '\0';
}
/*static esp_err_t esp_core_dump_uart_write_prepare(void *priv, uint32_t *data_len)
{
esp_err_t err = ESP_OK;
return err;
}*/
static esp_err_t esp_core_dump_uart_write_start(void *priv)
{
// core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
esp_err_t err = ESP_OK;
esp_panicPutStr("================= CORE DUMP START =================\r\n");
return err;
}
static esp_err_t esp_core_dump_uart_write_end(void *priv)
{
// core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
esp_err_t err = ESP_OK;
esp_panicPutStr("================= CORE DUMP END =================\r\n");
return err;
}
static esp_err_t esp_core_dump_uart_write_data(void *priv, void * data, uint32_t data_len)
{
// core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
esp_err_t err = ESP_OK;
char buf[64 + 4], *addr = data;
char *end = addr + data_len;
// esp_panicPutStr("CORE DUMP SEC: ");
// esp_panicPutDec(data_len);
// esp_panicPutStr("bytes\r\n");
while (addr < end) {
size_t len = end - addr;
if (len > 48) len = 48;
/* Copy to stack to avoid alignment restrictions. */
char *tmp = buf + (sizeof(buf) - len);
memcpy(tmp, addr, len);
esp_core_dump_b64_encode((const uint8_t *)tmp, len, (uint8_t *)buf);
addr += len;
esp_panicPutStr(buf);
// for (size_t i = 0; buf[i] != '\0'; i++) {
// panicPutChar(buf[i]);
// }
//if (addr % 96 == 0)
esp_panicPutStr("\r\n");
/* Feed the Cerberus. */
// TIMERG0.wdt_wprotect = TIMG_WDT_WKEY_VALUE;
// TIMERG0.wdt_feed = 1;
}
return err;
}
void esp_core_dump_to_uart(XtExcFrame *frame)
{
core_dump_write_config_t wr_cfg;
//core_dump_write_flash_data_t wr_data;
wr_cfg.prepare = NULL;//esp_core_dump_uart_write_prepare;
wr_cfg.start = esp_core_dump_uart_write_start;
wr_cfg.end = esp_core_dump_uart_write_end;
wr_cfg.write = esp_core_dump_uart_write_data;
wr_cfg.priv = NULL;
esp_panicPutStr("Save core dump to flash...\r\n");
esp_core_dump_write(frame, &wr_cfg, 0);
esp_panicPutStr("Core dump has been written to uart.\r\n");
}
#endif
@@ -261,6 +695,7 @@ void esp_core_dump_init()
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
const esp_partition_t *core_part;
ESP_LOGI(TAG, "Init core dump to flash");
core_part = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_COREDUMP, NULL);
if (!core_part) {
ESP_LOGE(TAG, "No core dump partition found!");
@@ -271,6 +706,9 @@ void esp_core_dump_init()
s_core_part_size = core_part->size;
#endif
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART
ESP_LOGI(TAG, "Init core dump to UART");
#endif
}
#endif