mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-11-03 14:01:53 +00:00 
			
		
		
		
	Add configuration option to fallback to software implementation for exponential mod incase of hardware is not supporting it for larger MPI value. Usecase: ESP32C3 only supports till RSA3072 in hardware. This config option will help to support 4k certificates for WPA enterprise connection.
		
			
				
	
	
		
			530 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			530 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/**
 | 
						|
 * \brief  Multi-precision integer library, ESP32 hardware accelerated parts
 | 
						|
 *
 | 
						|
 *  based on mbedTLS implementation
 | 
						|
 *
 | 
						|
 *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
 | 
						|
 *  Additions Copyright (C) 2016, Espressif Systems (Shanghai) PTE Ltd
 | 
						|
 *  SPDX-License-Identifier: Apache-2.0
 | 
						|
 *
 | 
						|
 *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 | 
						|
 *  not use this file except in compliance with the License.
 | 
						|
 *  You may obtain a copy of the License at
 | 
						|
 *
 | 
						|
 *  http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 *
 | 
						|
 *  Unless required by applicable law or agreed to in writing, software
 | 
						|
 *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | 
						|
 *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
 *  See the License for the specific language governing permissions and
 | 
						|
 *  limitations under the License.
 | 
						|
 *
 | 
						|
 */
 | 
						|
#include <stdio.h>
 | 
						|
#include <string.h>
 | 
						|
#include <malloc.h>
 | 
						|
#include <limits.h>
 | 
						|
#include <assert.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <sys/param.h>
 | 
						|
#include "soc/hwcrypto_periph.h"
 | 
						|
#include "esp_system.h"
 | 
						|
#include "esp_log.h"
 | 
						|
#include "esp_attr.h"
 | 
						|
#include "bignum_impl.h"
 | 
						|
#include "soc/soc_caps.h"
 | 
						|
 | 
						|
#include <mbedtls/bignum.h>
 | 
						|
 | 
						|
 | 
						|
/* Some implementation notes:
 | 
						|
 *
 | 
						|
 * - Naming convention x_words, y_words, z_words for number of words (limbs) used in a particular
 | 
						|
 *   bignum. This number may be less than the size of the bignum
 | 
						|
 *
 | 
						|
 * - Naming convention hw_words for the hardware length of the operation. This number maybe be rounded up
 | 
						|
 *   for targets that requres this (e.g. ESP32), and may be larger than any of the numbers
 | 
						|
 *   involved in the calculation.
 | 
						|
 *
 | 
						|
 * - Timing behaviour of these functions will depend on the length of the inputs. This is fundamentally
 | 
						|
 *   the same constraint as the software mbedTLS implementations, and relies on the same
 | 
						|
 *   countermeasures (exponent blinding, etc) which are used in mbedTLS.
 | 
						|
 */
 | 
						|
 | 
						|
static const __attribute__((unused)) char *TAG = "bignum";
 | 
						|
 | 
						|
#define ciL    (sizeof(mbedtls_mpi_uint))         /* chars in limb  */
 | 
						|
#define biL    (ciL << 3)                         /* bits  in limb  */
 | 
						|
 | 
						|
 | 
						|
/* Convert bit count to word count
 | 
						|
 */
 | 
						|
static inline size_t bits_to_words(size_t bits)
 | 
						|
{
 | 
						|
    return (bits + 31) / 32;
 | 
						|
}
 | 
						|
 | 
						|
/* Return the number of words actually used to represent an mpi
 | 
						|
   number.
 | 
						|
*/
 | 
						|
int __wrap_mbedtls_mpi_exp_mod( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, mbedtls_mpi *_Rinv );
 | 
						|
extern int __real_mbedtls_mpi_exp_mod( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, mbedtls_mpi *_Rinv );
 | 
						|
 | 
						|
static size_t mpi_words(const mbedtls_mpi *mpi)
 | 
						|
{
 | 
						|
    for (size_t i = mpi->n; i > 0; i--) {
 | 
						|
        if (mpi->p[i - 1] != 0) {
 | 
						|
            return i;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 *
 | 
						|
 * There is a need for the value of integer N' such that B^-1(B-1)-N^-1N'=1,
 | 
						|
 * where B^-1(B-1) mod N=1. Actually, only the least significant part of
 | 
						|
 * N' is needed, hence the definition N0'=N' mod b. We reproduce below the
 | 
						|
 * simple algorithm from an article by Dusse and Kaliski to efficiently
 | 
						|
 * find N0' from N0 and b
 | 
						|
 */
 | 
						|
static mbedtls_mpi_uint modular_inverse(const mbedtls_mpi *M)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    uint64_t t = 1;
 | 
						|
    uint64_t two_2_i_minus_1 = 2;   /* 2^(i-1) */
 | 
						|
    uint64_t two_2_i = 4;           /* 2^i */
 | 
						|
    uint64_t N = M->p[0];
 | 
						|
 | 
						|
    for (i = 2; i <= 32; i++) {
 | 
						|
        if ((mbedtls_mpi_uint) N * t % two_2_i >= two_2_i_minus_1) {
 | 
						|
            t += two_2_i_minus_1;
 | 
						|
        }
 | 
						|
 | 
						|
        two_2_i_minus_1 <<= 1;
 | 
						|
        two_2_i <<= 1;
 | 
						|
    }
 | 
						|
 | 
						|
    return (mbedtls_mpi_uint)(UINT32_MAX - t + 1);
 | 
						|
}
 | 
						|
 | 
						|
/* Calculate Rinv = RR^2 mod M, where:
 | 
						|
 *
 | 
						|
 *  R = b^n where b = 2^32, n=num_words,
 | 
						|
 *  R = 2^N (where N=num_bits)
 | 
						|
 *  RR = R^2 = 2^(2*N) (where N=num_bits=num_words*32)
 | 
						|
 *
 | 
						|
 * This calculation is computationally expensive (mbedtls_mpi_mod_mpi)
 | 
						|
 * so caller should cache the result where possible.
 | 
						|
 *
 | 
						|
 * DO NOT call this function while holding esp_mpi_enable_hardware_hw_op().
 | 
						|
 *
 | 
						|
 */
 | 
						|
static int calculate_rinv(mbedtls_mpi *Rinv, const mbedtls_mpi *M, int num_words)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    size_t num_bits = num_words * 32;
 | 
						|
    mbedtls_mpi RR;
 | 
						|
    mbedtls_mpi_init(&RR);
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&RR, num_bits * 2, 1));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(Rinv, &RR, M));
 | 
						|
 | 
						|
cleanup:
 | 
						|
    mbedtls_mpi_free(&RR);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Z = (X * Y) mod M
 | 
						|
 | 
						|
   Not an mbedTLS function
 | 
						|
*/
 | 
						|
int esp_mpi_mul_mpi_mod(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
 | 
						|
    size_t x_bits = mbedtls_mpi_bitlen(X);
 | 
						|
    size_t y_bits = mbedtls_mpi_bitlen(Y);
 | 
						|
    size_t m_bits = mbedtls_mpi_bitlen(M);
 | 
						|
    size_t z_bits = MIN(m_bits, x_bits + y_bits);
 | 
						|
    size_t x_words = bits_to_words(x_bits);
 | 
						|
    size_t y_words = bits_to_words(y_bits);
 | 
						|
    size_t m_words = bits_to_words(m_bits);
 | 
						|
    size_t z_words = bits_to_words(z_bits);
 | 
						|
    size_t hw_words = esp_mpi_hardware_words(MAX(x_words, MAX(y_words, m_words))); /* longest operand */
 | 
						|
    mbedtls_mpi Rinv;
 | 
						|
    mbedtls_mpi_uint Mprime;
 | 
						|
 | 
						|
    /* Calculate and load the first stage montgomery multiplication */
 | 
						|
    mbedtls_mpi_init(&Rinv);
 | 
						|
    MBEDTLS_MPI_CHK(calculate_rinv(&Rinv, M, hw_words));
 | 
						|
    Mprime = modular_inverse(M);
 | 
						|
 | 
						|
    esp_mpi_enable_hardware_hw_op();
 | 
						|
    /* Load and start a (X * Y) mod M calculation */
 | 
						|
    esp_mpi_mul_mpi_mod_hw_op(X, Y, M, &Rinv, Mprime, hw_words);
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Z, z_words));
 | 
						|
 | 
						|
    esp_mpi_read_result_hw_op(Z, z_words);
 | 
						|
    Z->s = X->s * Y->s;
 | 
						|
 | 
						|
cleanup:
 | 
						|
    mbedtls_mpi_free(&Rinv);
 | 
						|
    esp_mpi_disable_hardware_hw_op();
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef ESP_MPI_USE_MONT_EXP
 | 
						|
/*
 | 
						|
 * Return the most significant one-bit.
 | 
						|
 */
 | 
						|
static size_t mbedtls_mpi_msb( const mbedtls_mpi *X )
 | 
						|
{
 | 
						|
    int i, j;
 | 
						|
    if (X != NULL && X->n != 0) {
 | 
						|
        for (i = X->n - 1; i >= 0; i--) {
 | 
						|
            if (X->p[i] != 0) {
 | 
						|
                for (j = biL - 1; j >= 0; j--) {
 | 
						|
                    if ((X->p[i] & (1 << j)) != 0) {
 | 
						|
                        return (i * biL) + j;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Montgomery exponentiation: Z = X ^ Y mod M  (HAC 14.94)
 | 
						|
 */
 | 
						|
static int mpi_montgomery_exp_calc( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M,
 | 
						|
                                    mbedtls_mpi *Rinv,
 | 
						|
                                    size_t hw_words,
 | 
						|
                                    mbedtls_mpi_uint Mprime )
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    mbedtls_mpi X_, one;
 | 
						|
 | 
						|
    mbedtls_mpi_init(&X_);
 | 
						|
    mbedtls_mpi_init(&one);
 | 
						|
    if ( ( ( ret = mbedtls_mpi_grow(&one, hw_words) ) != 0 ) ||
 | 
						|
            ( ( ret = mbedtls_mpi_set_bit(&one, 0, 1) )  != 0 ) ) {
 | 
						|
        goto cleanup2;
 | 
						|
    }
 | 
						|
 | 
						|
    // Algorithm from HAC 14.94
 | 
						|
    {
 | 
						|
        // 0 determine t (highest bit set in y)
 | 
						|
        int t = mbedtls_mpi_msb(Y);
 | 
						|
 | 
						|
        esp_mpi_enable_hardware_hw_op();
 | 
						|
 | 
						|
        // 1.1 x_ = mont(x, R^2 mod m)
 | 
						|
        //        = mont(x, rb)
 | 
						|
        MBEDTLS_MPI_CHK( esp_mont_hw_op(&X_, X, Rinv, M, Mprime, hw_words, false) );
 | 
						|
 | 
						|
        // 1.2 z = R mod m
 | 
						|
        // now z = R mod m = Mont (R^2 mod m, 1) mod M (as Mont(x) = X&R^-1 mod M)
 | 
						|
        MBEDTLS_MPI_CHK( esp_mont_hw_op(Z, Rinv, &one, M, Mprime, hw_words, true) );
 | 
						|
 | 
						|
        // 2 for i from t down to 0
 | 
						|
        for (int i = t; i >= 0; i--) {
 | 
						|
            // 2.1 z = mont(z,z)
 | 
						|
            if (i != t) { // skip on the first iteration as is still unity
 | 
						|
                MBEDTLS_MPI_CHK( esp_mont_hw_op(Z, Z, Z, M, Mprime, hw_words, true) );
 | 
						|
            }
 | 
						|
 | 
						|
            // 2.2 if y[i] = 1 then z = mont(A, x_)
 | 
						|
            if (mbedtls_mpi_get_bit(Y, i)) {
 | 
						|
                MBEDTLS_MPI_CHK( esp_mont_hw_op(Z, Z, &X_, M, Mprime, hw_words, true) );
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // 3 z = Mont(z, 1)
 | 
						|
        MBEDTLS_MPI_CHK( esp_mont_hw_op(Z, Z, &one, M, Mprime, hw_words, true) );
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
    esp_mpi_disable_hardware_hw_op();
 | 
						|
 | 
						|
cleanup2:
 | 
						|
    mbedtls_mpi_free(&X_);
 | 
						|
    mbedtls_mpi_free(&one);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#endif //USE_MONT_EXPONENATIATION
 | 
						|
 | 
						|
/*
 | 
						|
 * Z = X ^ Y mod M
 | 
						|
 *
 | 
						|
 * _Rinv is optional pre-calculated version of Rinv (via calculate_rinv()).
 | 
						|
 *
 | 
						|
 * (See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
 | 
						|
 *
 | 
						|
 */
 | 
						|
int __wrap_mbedtls_mpi_exp_mod( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, mbedtls_mpi *_Rinv )
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    size_t x_words = mpi_words(X);
 | 
						|
    size_t y_words = mpi_words(Y);
 | 
						|
    size_t m_words = mpi_words(M);
 | 
						|
 | 
						|
 | 
						|
    /* "all numbers must be the same length", so choose longest number
 | 
						|
       as cardinal length of operation...
 | 
						|
    */
 | 
						|
    size_t num_words = esp_mpi_hardware_words(MAX(m_words, MAX(x_words, y_words)));
 | 
						|
 | 
						|
    mbedtls_mpi Rinv_new; /* used if _Rinv == NULL */
 | 
						|
    mbedtls_mpi *Rinv;    /* points to _Rinv (if not NULL) othwerwise &RR_new */
 | 
						|
    mbedtls_mpi_uint Mprime;
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_int(M, 0) <= 0 || (M->p[0] & 1) == 0) {
 | 
						|
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_int(Y, 0) < 0) {
 | 
						|
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_int(Y, 0) == 0) {
 | 
						|
        return mbedtls_mpi_lset(Z, 1);
 | 
						|
    }
 | 
						|
 | 
						|
    if (num_words * 32 > SOC_RSA_MAX_BIT_LEN) {
 | 
						|
#ifdef CONFIG_MBEDTLS_LARGE_KEY_SOFTWARE_MPI
 | 
						|
        return __real_mbedtls_mpi_exp_mod(Z, X, Y, M, _Rinv);
 | 
						|
#else
 | 
						|
        return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
    /* Determine RR pointer, either _RR for cached value
 | 
						|
       or local RR_new */
 | 
						|
    if (_Rinv == NULL) {
 | 
						|
        mbedtls_mpi_init(&Rinv_new);
 | 
						|
        Rinv = &Rinv_new;
 | 
						|
    } else {
 | 
						|
        Rinv = _Rinv;
 | 
						|
    }
 | 
						|
    if (Rinv->p == NULL) {
 | 
						|
        MBEDTLS_MPI_CHK(calculate_rinv(Rinv, M, num_words));
 | 
						|
    }
 | 
						|
 | 
						|
    Mprime = modular_inverse(M);
 | 
						|
 | 
						|
    // Montgomery exponentiation: Z = X ^ Y mod M  (HAC 14.94)
 | 
						|
#ifdef ESP_MPI_USE_MONT_EXP
 | 
						|
    ret = mpi_montgomery_exp_calc(Z, X, Y, M, Rinv, num_words, Mprime) ;
 | 
						|
    MBEDTLS_MPI_CHK(ret);
 | 
						|
#else
 | 
						|
    esp_mpi_enable_hardware_hw_op();
 | 
						|
 | 
						|
    esp_mpi_exp_mpi_mod_hw_op(X, Y, M, Rinv, Mprime, num_words);
 | 
						|
    ret = mbedtls_mpi_grow(Z, m_words);
 | 
						|
    if (ret != 0) {
 | 
						|
        esp_mpi_disable_hardware_hw_op();
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
    esp_mpi_read_result_hw_op(Z, m_words);
 | 
						|
    esp_mpi_disable_hardware_hw_op();
 | 
						|
#endif
 | 
						|
 | 
						|
    // Compensate for negative X
 | 
						|
    if (X->s == -1 && (Y->p[0] & 1) != 0) {
 | 
						|
        Z->s = -1;
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(Z, M, Z));
 | 
						|
    } else {
 | 
						|
        Z->s = 1;
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
    if (_Rinv == NULL) {
 | 
						|
        mbedtls_mpi_free(&Rinv_new);
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(MBEDTLS_MPI_MUL_MPI_ALT) /* MBEDTLS_MPI_MUL_MPI_ALT */
 | 
						|
 | 
						|
static int mpi_mult_mpi_failover_mod_mult( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t z_words);
 | 
						|
static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t y_words, size_t z_words);
 | 
						|
 | 
						|
/* Z = X * Y */
 | 
						|
int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y )
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    size_t x_bits = mbedtls_mpi_bitlen(X);
 | 
						|
    size_t y_bits = mbedtls_mpi_bitlen(Y);
 | 
						|
    size_t x_words = bits_to_words(x_bits);
 | 
						|
    size_t y_words = bits_to_words(y_bits);
 | 
						|
    size_t z_words = bits_to_words(x_bits + y_bits);
 | 
						|
    size_t hw_words = esp_mpi_hardware_words(MAX(x_words, y_words)); // length of one operand in hardware
 | 
						|
 | 
						|
    /* Short-circuit eval if either argument is 0 or 1.
 | 
						|
 | 
						|
       This is needed as the mpi modular division
 | 
						|
       argument will sometimes call in here when one
 | 
						|
       argument is too large for the hardware unit, but the other
 | 
						|
       argument is zero or one.
 | 
						|
    */
 | 
						|
    if (x_bits == 0 || y_bits == 0) {
 | 
						|
        mbedtls_mpi_lset(Z, 0);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    if (x_bits == 1) {
 | 
						|
        ret = mbedtls_mpi_copy(Z, Y);
 | 
						|
        Z->s *= X->s;
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
    if (y_bits == 1) {
 | 
						|
        ret = mbedtls_mpi_copy(Z, X);
 | 
						|
        Z->s *= Y->s;
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Grow Z to result size early, avoid interim allocations */
 | 
						|
    MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, z_words) );
 | 
						|
 | 
						|
    /* If either factor is over 2048 bits, we can't use the standard hardware multiplier
 | 
						|
       (it assumes result is double longest factor, and result is max 4096 bits.)
 | 
						|
 | 
						|
       However, we can fail over to mod_mult for up to 4096 bits of result (modulo
 | 
						|
       multiplication doesn't have the same restriction, so result is simply the
 | 
						|
       number of bits in X plus number of bits in in Y.)
 | 
						|
    */
 | 
						|
    if (hw_words * 32 > SOC_RSA_MAX_BIT_LEN/2) {
 | 
						|
        if (z_words * 32 <= SOC_RSA_MAX_BIT_LEN) {
 | 
						|
            /* Note: it's possible to use mpi_mult_mpi_overlong
 | 
						|
               for this case as well, but it's very slightly
 | 
						|
               slower and requires a memory allocation.
 | 
						|
            */
 | 
						|
            return mpi_mult_mpi_failover_mod_mult(Z, X, Y, z_words);
 | 
						|
        } else {
 | 
						|
            /* Still too long for the hardware unit... */
 | 
						|
            if (y_words > x_words) {
 | 
						|
                return mpi_mult_mpi_overlong(Z, X, Y, y_words, z_words);
 | 
						|
            } else {
 | 
						|
                return mpi_mult_mpi_overlong(Z, Y, X, x_words, z_words);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Otherwise, we can use the (faster) multiply hardware unit */
 | 
						|
    esp_mpi_enable_hardware_hw_op();
 | 
						|
 | 
						|
    esp_mpi_mul_mpi_hw_op(X, Y, hw_words);
 | 
						|
    esp_mpi_read_result_hw_op(Z, z_words);
 | 
						|
 | 
						|
    esp_mpi_disable_hardware_hw_op();
 | 
						|
 | 
						|
    Z->s = X->s * Y->s;
 | 
						|
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Deal with the case when X & Y are too long for the hardware unit, by splitting one operand
 | 
						|
   into two halves.
 | 
						|
 | 
						|
   Y must be the longer operand
 | 
						|
 | 
						|
   Slice Y into Yp, Ypp such that:
 | 
						|
   Yp = lower 'b' bits of Y
 | 
						|
   Ypp = upper 'b' bits of Y (right shifted)
 | 
						|
 | 
						|
   Such that
 | 
						|
   Z = X * Y
 | 
						|
   Z = X * (Yp + Ypp<<b)
 | 
						|
   Z = (X * Yp) + (X * Ypp<<b)
 | 
						|
 | 
						|
   Note that this function may recurse multiple times, if both X & Y
 | 
						|
   are too long for the hardware multiplication unit.
 | 
						|
*/
 | 
						|
static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t y_words, size_t z_words)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    mbedtls_mpi Ztemp;
 | 
						|
    /* Rather than slicing in two on bits we slice on limbs (32 bit words) */
 | 
						|
    const size_t words_slice = y_words / 2;
 | 
						|
    /* Yp holds lower bits of Y (declared to reuse Y's array contents to save on copying) */
 | 
						|
    const mbedtls_mpi Yp = {
 | 
						|
        .p = Y->p,
 | 
						|
        .n = words_slice,
 | 
						|
        .s = Y->s
 | 
						|
    };
 | 
						|
    /* Ypp holds upper bits of Y, right shifted (also reuses Y's array contents) */
 | 
						|
    const mbedtls_mpi Ypp = {
 | 
						|
        .p = Y->p + words_slice,
 | 
						|
        .n = y_words - words_slice,
 | 
						|
        .s = Y->s
 | 
						|
    };
 | 
						|
    mbedtls_mpi_init(&Ztemp);
 | 
						|
 | 
						|
    /* Get result Ztemp = Yp * X (need temporary variable Ztemp) */
 | 
						|
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi(&Ztemp, X, &Yp) );
 | 
						|
 | 
						|
    /* Z = Ypp * Y */
 | 
						|
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi(Z, X, &Ypp) );
 | 
						|
 | 
						|
    /* Z = Z << b */
 | 
						|
    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l(Z, words_slice * 32) );
 | 
						|
 | 
						|
    /* Z += Ztemp */
 | 
						|
    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi(Z, Z, &Ztemp) );
 | 
						|
 | 
						|
cleanup:
 | 
						|
    mbedtls_mpi_free(&Ztemp);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Special-case of mbedtls_mpi_mult_mpi(), where we use hardware montgomery mod
 | 
						|
   multiplication to calculate an mbedtls_mpi_mult_mpi result where either
 | 
						|
   A or B are >2048 bits so can't use the standard multiplication method.
 | 
						|
 | 
						|
   Result (number of words, based on A bits + B bits) must still be less than 4096 bits.
 | 
						|
 | 
						|
   This case is simpler than the general case modulo multiply of
 | 
						|
   esp_mpi_mul_mpi_mod() because we can control the other arguments:
 | 
						|
 | 
						|
   * Modulus is chosen with M=(2^num_bits - 1) (ie M=R-1), so output
 | 
						|
   * Mprime and Rinv are therefore predictable as follows:
 | 
						|
   isn't actually modulo anything.
 | 
						|
   Mprime 1
 | 
						|
   Rinv 1
 | 
						|
 | 
						|
   (See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
 | 
						|
*/
 | 
						|
 | 
						|
static int mpi_mult_mpi_failover_mod_mult( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t z_words)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    size_t hw_words = esp_mpi_hardware_words(z_words);
 | 
						|
 | 
						|
    esp_mpi_enable_hardware_hw_op();
 | 
						|
 | 
						|
    esp_mpi_mult_mpi_failover_mod_mult_hw_op(X, Y, hw_words );
 | 
						|
    MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, hw_words) );
 | 
						|
    esp_mpi_read_result_hw_op(Z, hw_words);
 | 
						|
 | 
						|
    Z->s = X->s * Y->s;
 | 
						|
cleanup:
 | 
						|
    esp_mpi_disable_hardware_hw_op();
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* MBEDTLS_MPI_MUL_MPI_ALT */
 |